Patella radiograph image texture: The correlation with lumbar spine bone mineral density values

https://doi.org/10.24042/jipfalbiruni.v11i1.11348

Agus Mulyono, Md. Monirul Islam, Vishal R Panse

Abstract


Osteoporosis is a common metabolic disease that is frequently overlooked. This disease primarily affects adult women and causes bone thinness and fragility, which leads to fractures. DXA (Dual Energy X-ray Absorptiometry) is used to diagnose osteoporosis by measuring bone mineral density. These devices are expensive and not widely available for treatment. This study aimed to find a correlation between the texture value of an image of the patellar bone and the density of the lumbar spine, which can then be used to detect osteoporosis. This study's sample size was 19 subjects, and their bone mineral density (BMD) was measured using DXA. An X-ray was then taken to obtain an image of the genu bone. The stages of the research are as follows: 1) preparing the X-ray image of the bone; 2) determining the image texture value method of gray level co-occurrence matrix 3) investigating the relationship between texture values and BMD in the lumbar spine. The correlation test results revealed a statistically significant correlation between the texture value and the BMD of the lumbar spine for the correlation and variance characteristics (P less than 0.05). As a result, the value of the texture of the image of the patella bone can be used to detect osteoporosis.


Keywords


Radiography, patella, BMD, texture image

Full Text:

PDF

References


Adams, J. E. (2013). Dual-energy X-Ray. Osteoporosis and Bone Densitometry Measurements. Medical Radiology. Springer, Berlin, Heidelberg. 101–122. https://doi.org/10.1007/174_2012_789

Azhari, Suprijanto, Diputra, Y., Juliastuti, E., & Arifin, A. Z. (2014) Analisis citra radiografi panoramik pada tulang mandibula untuk deteksi dini osteoporosis dengan metode gray level cooccurence matrix (GLCM) panoramic radiograph image analysis using cooccurence gray level matrix method (GLCM) for early detection of O. Mkb, 46(1), 203–208.

Cauley, J. A. (2013). Public health impact of osteoporosis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 68(10), 1243–1251. https://doi.org/10.1093/gerona/glt093

Center, J. R. (2017). Fracture burden: What two and a half decades of dubbo osteoporosis epidemiology study data reveal about clinical outcomes of osteoporosis. Current Osteoporosis Reports, 15(2), 88–95. https://doi.org/10.1007/s11914-017-0352-5

D’Elia, G., Caracchini, G., Cavalli, L., & Innocenti, P. (2009). Bone fragility and imaging techniques. Clinical Cases in Mineral and Bone Metabolism, 6(3), 234–246.

Deoker, M., & Pat, P. S. N. (2017). A review on osteoporosis detection by using CT images based on gray level co-occurrence matrix and rule based approach. International Journal of Engineering Science and Computing, 7(3), 4765–4767.

Diamond, T., & Sheu, A. (2016). Bone mineral density: Testing for osteoporosis. Australian Prescriber, 39(2), 35–39.

Garza, B. C. V., Cepeda, M. A. A. N., Hernandez, A. S., Martinez, M. G. O., Rangel, G. J., Romero, C. C., Delgadillo, R. H., & Soto, J. M. S. (2019). Idiopathic condylar resorption: Diagnosis, pathophysiology, treatment and orthodontic considerations. International Journal of Applied Dental Sciences, 87(3), 87–90.

Gebejes, a, Master, E. M., & Samples, a. (2013). Texture characterization based on grey-level co-occurrence Matrix. Conference of Informatics and Management Sciences, 24(1) 375–378.

Hirvasniemi, J., Gielis, W. P., Arbabi, S., Agricola, R., van Spil, W. E., Arbabi, V., & Weinans, H. (2019). Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: Data from the Cohort Hip and Cohort Knee (CHECK) study. Osteoarthritis and Cartilage, 27(6), 906–914. https://doi.org/10.1016/J.JOCA.2019.02.796

Hwang, J. J., Lee, J. H., Han, S. S., Kim, Y. H., Jeong, H. G., Choi, Y. J., & Park, W. (2017). Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofacial Radiology, 46(7) 1-10. https://doi.org/10.1259/dmfr.20170006

Insania, W. H., Nurhasanaha, & Sampurnoa, J. (2018). Aplikasi geometri fraktal untuk identifikasi osteoporosis pada tulang tangan dengan metode analisis fourier 2D. Prisma Fisika, 6(1), 62–64.

Kavitha, M. S., Asano, A., Taguchi, A., Kurita, T., & Sanada, M. (2012). Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Medical Imaging, 12, 1–11. https://doi.org/10.1186/1471-2342-12-1

Kawashima, Y., Fujita, A., Buch, K., Li, B., Qureshi, M. M., Chapman, M. N., & Sakai, O. (2019). Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. European Journal of Radiology, 116, 212–218. https://doi.org/10.1016/j.ejrad.2019.05.009

Link, T. M., & Kazakia, G. (2020). Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Current Rheumatology Reports, 22(5), 1–11. https://doi.org/10.1007/s11926-020-00892-w

Liu, P., Liang, X., Li, Z., Zhu, X., Zhang, Z., & Cai, L. (2019). Decoupled effects of bone mass, microarchitecture and tissue property on the mechanical deterioration of osteoporotic bones. Composites Part B: Engineering, 177(August), 107436. https://doi.org/10.1016/j.compositesb.2019.107436

Martineau, P., Morgan, S. L., & Leslie, W. D. (2021). Bone mineral densitometry reporting: Pearls and pitfalls. Canadian Association of Radiologists Journal, 72(3), 490–504. https://doi.org/10.1177/0846537120919627

Mithal, A., Bansal, B., Kyer, S. C., & Ebeling, P. (2014). The Asia-Pacific Regional audit-epidemiology, costs, and burden of osteoporosis in india 2013: A report of International Osteoporosis Foundation. Indian Journal of Endocrinology and Metabolism, 18(4), 449–454. https://doi.org/10.4103/2230-8210.137485

Pratiwi, M., Alexander, Harefa, J., & Nanda, S. (2015). Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Computer Science, 59(Iccsci), 83–91. https://doi.org/10.1016/j.procs.2015.07.340

Ralston, S. H., & Fraser, J. (2015). Diagnosis and management of osteoporosis. The Practitioner, 259(1788), 15–19, 2. https://europepmc.org/article/med/26882774

Sela, E. I. (2021). Deteksi osteoporosis pada citra radiograf panoramik dental menggunakan algoritme J48 dan learning vector quantization. Jurnal Teknologi Dan Sistem Komputer, 9(4), 211–217. https://doi.org/10.14710/JTSISKOM.2021.14197

Shirvaikar, M., Huang, N., & Dong, X. N. (2016). The measurement of bone quality using gray level co-occurrence matrix textural features. Journal of Medical Imaging and Health Informatics, 6(6), 1357–1362. https://doi.org/10.1166/JMIHI.2016.1812

Sozen, T., Ozisik, L., & Calik Basaran, N. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46–56. https://doi.org/10.5152/eurjrheum.2016.048

Su, R., Liu, T., Sun, C., Jin, Q., Jennane, R., & Wei, L. (2020). Fusing convolutional neural network features with hand-crafted features for osteoporosis diagnoses. Neurocomputing, 385, 300–309. https://doi.org/10.1016/j.neucom.2019.12.083

Valentinitsch, A., Trebeschi, S., Kaesmacher, J., Lorenz, C., Löffler, M. T., Zimmer, C., Baum, T., & Kirschke, J. S. (2019). Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporosis International, 30(6), 1275–1285. https://doi.org/10.1007/s00198-019-04910-1

White, S. C. (2014). Oral radiographic predictors of osteoporosis. Dentomaxillofac Radiol, 31(2), 84–92. https://doi.org/10.1038/SJ.DMFR.4600674

Yang, J., Pham, S. M., & Crabbe, D. L. (2003). Effects of oestrogen deficiency on rat mandibular and tibial microarchitecture. Dentomaxillofacial Radiology, 32(4), 247–251. https://doi.org/10.1259/DMFR/12560890

Yong, E. L., & Logan, S. (2021). Menopausal osteoporosis: Screening, prevention and treatment. Singapore Medical Journal, 62(4), 159–166. https://doi.org/10.11622/SMEDJ.2021036

Yousfi, L., Houam, L., Boukrouche, A., Lespessailles, E., Ros, F., & Jennane, R. (2019). Texture analysis and genetic algorithms for osteoporosis diagnosis. International Journal of Pattern Recognition and Artificial Intelligence, 34(5) 1-20. https://doi.org/10.1142/S0218001420570025

Zhibin, D., Steck, R., Doan, N., Woodruff, M. A., Ivanovski, S., & Xiao, Y. (2015). Estrogen deficiency associated bone loss in the maxilla: A methodology to quantify the changes in the maxillary intra-radicular alveolar bone in an ovariectomized rat osteoporosis model, Tissue Eng Part C Methods, 21(5) 458-66.

Zioupos, P., Kirchner, H. O. K., & Peterlik, H. (2020). Ageing bone fractures: The case of a ductile to brittle transition that shifts with age. Bone, 131(1) 1-22. https://doi.org/10.1016/j.bone.2019.115176




DOI: https://doi.org/10.24042/jipfalbiruni.v11i1.11348

Article Metrics

Abstract views : 120 | PDF downloads : 33

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Physics Education Department, Universitas Islam Negeri Raden Intan Lampunge-ISSN 2503-023X