Understanding gait characteristics of Japanese elderly men through joint angle and angular velocity parameters

https://doi.org/10.24042/jipf%20al-biruni.v11i1.11458

Irma Nur Afiah, Hiroki Nakashima, Ping Yeap Loh, Satoshi Muraki

Abstract


Studies investigating the walking patterns of elderly men are well documented, however, there has been no investigation of the gait parameters that specifically reflect the walking motion of elderly men. This study aimed to identify reliable gait parameters to represent the walking motion of elderly Japanese men. 33 elderly men (65 to 74.9 years old) and 20 very elderly men (≥ 75 years old) participated. A 3-dimensional motion analysis system was used to collect kinematic data and 52 gait parameters were analyzed namely; spatiotemporal gait, joint angle, and angular velocity parameters (peak value and peak timing at the hip, knee, and ankle joints. Our results showed that walking speed, cadence, walk ratio, gait cycle, peak joint angle timing, and angular velocity parameters significantly differ between elderly men and very elderly men. Delayed peak timing in the joint angle occurred during the terminal stance phase and pre-swing phase. The accurate parameters for walking motion in old Japanese men as they age may result from the peak timing of joint angle parameters and the peak value of angular velocity parameters.

Keywords


Aging, Gait characteristics, Elderly, Joint angle, Angular velocity

Full Text:

PDF

References


Afiah, I. N., Nakashima, H., Loh, P. Y., & Muraki, S. (2016). An exploratory investigation of changes in gait parameters with age in elderly Japanese women. SpringerPlus,5(1), 1-14. https://doi.org/10.1186/s40064-016-2739-7

Alexander, N. B. (1996). Gait disorders in older adults. Journal of the American Geriatrics Society, 44(4), 434–451. https://doi.org/10.1111/j.15325415.1996.tb06417.x

Anderson, D. E., & Madigan, M. L. (2014). Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. Journal of Biomechanics, 47(5), 1104–1109. https://doi.org/10.1016/j.jbiomech.2013.12.024

Andriacchi, T. P., Ogle, J. A., & Galante, J. O. (1977). Walking speed as a basis for normal and abnormal gait measurements. Journal of Biomechanics, 10(4), 261–268. https://doi.org/10.1016/0021-9290(77)90049-5

Astephen Wilson, J. L., Deluzio, K. J., Dunbar, M. J., Caldwell, G. E., & Hubley-Kozey, C. L. (2011). The association between knee joint biomechanics and neuromuscular control and moderate knee osteoarthritis radiographic and pain severity. Osteoarthritis and Cartilage, 19(2), 186–193.

https://doi.org/10.1016/j.joca.2010.10.020

Ayyappa, E. (1997). Normal human locomotion, Part 1: basic concepts and terminology. Journal of Prosthetics and Orthotics, 9(1), 10–17.

Cho, S. H., Park, J. M., & Kwon, O. Y. (2004). Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clinical Biomechanics, 19(2), 145–152. https://doi.org/10.1016/j.clinbiomech.2003.10.003

D’Ambrogio, E. (2020). Japan’s ageing society. European Parliament Think Tank, December, 10. https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI(2020)659419

Demura, T., Demura, S. ichi, Yamaji, S., Yamada, T., & Kitabayashi, T. (2012). Gait characteristics when walking with rounded soft sole shoes. Foot, 22(1), 18–23. https://doi.org/10.1016/j.foot.2011.09.002

Endo, K., & Herr, H. (2014). A model of muscle-tendon function in human walking at self-selected speed. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 352–362. https://doi.org/10.1109/TNSRE.2013.2291903

Frank, J. S., & Patla, A. E. (2003). Balance and mobility challenges in older adults: Implications for preserving community mobility. American Journal of Preventive Medicine, 25(3), 157–163. https://doi.org/10.1016/S07493797(03)00179-X

Friedman, J. H. (1988). Gait disorders in the elderly. Medicine & Health/Rhose Island, 91(5), 134–135.

Grabiner, P. C., Biswas, S. T., & Grabiner, M. D. (2001). Age-related changes in spatial and temporal gait variables. Archives of Physical Medicine and Rehabilitation, 82(1), 31–35. https://doi.org/10.1053/apmr.2001.18219

Graham, D. F., Carty, C. P., Lloyd, D. G., & Barrett, R. S. (2015). Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults. Experimental Gerontology, 66(1), 39–46. https://doi.org/10.1016/j.exger.2015.04.006

Hortobágyi, T., Rider, P., Gruber, A. H., & DeVita, P. (2016). Age and muscle strength mediate the age-related biomechanical plasticity of gait. European Journal of Applied Physiology, 116(1), 805-814. https://doi.org/10.1007/s00421-015-3312-8

Jerome, G. J., Ko, S., Kauffman, D., Studenski, S. A., Ferrucci, L., & Simonsick, E. M. (2015). Gait characteristics associated with walking speed decline in older adults: results from the Baltimore Longitudinal Study of Aging. Archives of Gerontology and Geriatrics, 60(2), 239–243. https://doi.org/10.1016/j.archger.2015.01.007

Judge, J. O., Davis, R. B., & Ounpuu, S. (1996). Step length reductions in advanced age: the role of ankle and hip kinetics. The Journals of Gerontology, 51A(6), 303–312. https://doi.org/10.1093/gerona/51A.6.M303

Kang, H. G., & Dingwell, J. B. (2008). Separating the effects of age and walking speed on gait variability. Gait and Posture, 27(4), 572–577. https://doi.org/10.1016/j.gaitpost.2007.07.009

Kerrigan, D. C., Todd, M. K., Della Croce, U., Lipsitz, L. A., & Collins, J. J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79(3), 317–322. https://doi.org/10.1016/S0003-9993(98)90013-2

Kirtley, C., Whittle, M. W., & Jefferson, R. J. (1985). Influence of walking speed on gait parameters. Journal of Biomedical Engineering, 7(4), 282–288. https://doi.org/10.1016/0141-5425(85)90055-X

Lee, M., Kim, J., Son, J., & Kim, Y. (2013). Kinematic and kinetic analysis during forward and backward walking. Gait & Posture, 38(4), 674–678. https://doi.org/10.1016/j.gaitpost.2013.02.014

Leung, J., Smith, R., Harvey, L. A., Moseley, A. M., & Chapparo, J. (2014). The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: a within-subject study. Clinical Biomechanics (Bristol, Avon), 29(4), 423–428. https://doi.org/10.1016/j.clinbiomech.2014.01.009

Liu, M. Q., Anderson, F. C., Pandy, M. G., & Delp, S. L. (2006). Muscles that support the body also modulate forward progression during walking. Journal of Biomechanics, 39(14), 2623–2630. https://doi.org/10.1016/j.jbiomech.2005.08.017

McGibbon, C. A., & Krebs, D. E. (2001). Age-related changes in lower trunk coordination and energy transfer during gait. Journal of Neurophysiology, 85(5), 1923–1931.

Mills, P. M., & Barrett, R. S. (2001). Swing phase mechanics of healthy young and elderly men. Human Movement Science, 20(4–5), 427–446. https://doi.org/10.1016/S0167-9457(01)00061-6

Moyer, B. E., Chambers, a J., Redfern, M. S., & Cham, R. (2006). Gait parameters as predictors of slip severity in younger and older adults. Ergonomics, 49(4), 329–343. https://doi.org/10.1080/00140130500478553

Mundermann, A., Dyrby, C. O., & Andriacchi, T. P. (2005). Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis and Rheumatism, 52(9), 2835–2844. https://doi.org/10.1002/art.21262

Murray, M. P., Kory, R. C., & Clarckson, B. H. (1969). Walking patterns in healthy old men. Journal of Gerontology, 24(2), 169–178.

Norris, J. A., Granata, K. P., Mitros, M. R., Byrne, E. M., & Marsh, A. P. (2007). Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait & Posture, 25(4), 620–627. https://doi.org/10.1016/j.gaitpost.2006.07.002

Perry, J., & Burnfield, J. M. (2010). Gait analysis: Normal and pathological function. Journal of Sports Science & Medicine, 9(2), 353.

Prince, F., Corriveau, H., Hébert, R., & Winter, D. A. (1997). Gait in the elderly. Gait & Posture, 5(2), 128–135. https://doi.org/10.1016/S0966-6362(97)01118-1

Rueterbories, J., Spaich, E. G., Larsen, B., & Andersen, O. K. (2010). Methods for gait event detection and analysis in ambulatory systems. Medical Engineering & Physics, 32(6), 545–552. https://doi.org/10.1016/j.medengphy.2010.03.007

Schmitz, A., Silder, A., Heiderscheit, B., Mahoney, J., & Thelen, D. G. (2009). Differences in lower-extremity muscular activation during walking between healthy older and young adults. Journal of Electromyography and Kinesiology, 19(6), 1085–1091. https://doi.org/10.1016/j.jelekin.2008.10.008

Schulz, B. W. (2012). Healthy younger and older adults control foot placement to avoid small obstacles during gait primarily by modulating step width. Journal of Neuroengineering and Rehabilitation, 9(69), 1-9. https://doi.org/DOI: 10.1186/1743-0003-9-69

Silder, A., Heiderscheit, B., & Thelen, D. G. (2008). Active and passive contributions to joint kinetics during walking in older adults. Journal of Biomechanics, 41(7), 1520–1527. https://doi.org/10.1016/j.jbiomech.2008.02.016

Statistics Bureau of Japan. (2021). Statisical Handbook of Japan. Statistics Bureau, Ministry of Internal Affaird and Communications. https://www.iea.org/reports/japan-2021

Stenroth, L., Sillanpaa, E., McPhee, J. S., Narici, M. V., Gapeyeva, H., Paasuke, M., Barnouin, Y., Hogrel, J. Y., Butler-Browne, G., Bijlsma, A., Meskers, C. G. M., Maier, A. B., Finni, T., & Sipila, S. (2015). Plantarflexor muscle-tendon properties are associated with mobility in healthy older adults. Journals of Gerontology-Series A Biological Sciences and Medical Sciences, 70(8), 996–1002. https://doi.org/10.1093/gerona/glv011

Thorp, L. E., Sumner, D. R., Block, J. A., Moisio, K. C., Shott, S., & Wimmer, M. A. (2006). Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis and Rheumatism, 54(12), 3842–3849. https://doi.org/10.1002/art.22247

Van Iersel, M. B., Ribbers, H., Munneke, M., Borm, G. F., & Rikkert, M. G. O. (2007). The effect of cognitive dual tasks on balance during walking in physically fit elderly people. Archives of Physical Medicine and Rehabilitation, 88(2), 187–191. https://doi.org/10.1016/j.apmr.2006.10.031

Vieira, E. R., Lim, H.-H., Brunt, D., Hallal, C. Z., Kinsey, L., Errington, L., & Gonçalves, M. (2015). Temporo-spatial gait parameters during street crossing conditions: a comparison between younger and older adults. Gait & Posture, 41(2), 510–515. https://doi.org/10.1016/j.gaitpost.2014.12.001

Watanabe, K., Kouzaki, M., & Moritani, T. (2015). Regional neuromuscular regulation within human rectus femoris muscle during gait in young and elderly men. Journal of Biomechanics, 49(1), 19–25. https://doi.org/10.1016/j.jbiomech.2015.11.010

Watelain, E., Barbier, F., Allard, P., Thevenon, A., & Anguè, J. C. (2000). Gait pattern classification of healthy elderly men based on biomechanical data. Archives of Physical Medicine and Rehabilitation, 81(5), 579–586. https://doi.org/10.1053/mr.2000.4415

Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70(6), 340–347. https://doi.org/10.1016/0966-6362(96)82849-9




DOI: https://doi.org/10.24042/jipf%20al-biruni.v11i1.11458

Article Metrics

Abstract views : 83 | PDF downloads : 24

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Physics Education Department, Universitas Islam Negeri Raden Intan Lampunge-ISSN 2503-023X