Investigation on electron contamination of LINAC at different operating voltages using particle heavy ion transport code system (PHITS)

Bilalodin Bilalodin, Aris Haryadi, Yohannes Sardjono, Yaser Kasesaz


Research has been carried out to investigate the occurrence of secondary electron contamination in a linear accelerator (LINAC) machine. The research was conducted in a simulation using a Monte Carlo-based simulator, namely Particle and Heavy Ions Transport code System (PHITS). The simulation of the occurrence of secondary electron contamination was carried out based on the model of the LINAC Electa head that is operated at voltages of 6, 8, 10, 15, 18, and 25 MV, using a field area of 10 X 10 cm and SSD 100 cm. The simulation results show that electron contamination occurs due to the interaction of X-ray photons with the components of the LINAC head, namely the primary collimator, flattening filter, and secondary collimator. The secondary electron contaminants generated by the LINAC head components spread through the water phantom. The higher the operating voltage, the higher the secondary electron flux produced. The secondary electron contamination dose calculated in the water phantom shows that the higher the LINAC voltage, the higher is the dose received in the phantom.


LINAC; Electron contaminant; Dose; PHITS Code

Full Text:



Abou-taleb, W. M., Hassan, M. H., Mallah, E. A. El, & Kotb, S. M. (2018). MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC. Applied Radiation and Isotopes, 135(1), 184–191.

AL-Naqqash, M. A., Essa, S. I., & Hasan, R. H. (2018). Measurement of percentage depth dose (PDD) for 6 MeV in water phantom and homogenous actual planning. Iraqi Journal of Physics (IJP), 16(37), 1–6.

Anam, C., Soejoko, D. S., Haryanto, F., Yani, S., & Dougherty, G. (2020). Electron contamination for 6 MV photon beams from an Elekta linac: Monte Carlo simulation. Journal of Physics and Its Applications, 2(2), 97–101.

Anderson, R., Lamey, M., Macpherson, M., Carlone, M., & Introduction, I. (2015). Simulation of a medical linear accelerator for teaching purposes. Journal of Applied Clinical Medical Physics, 16(3), 359–377.

Butson, M. J. (1998). Skin dose from radiotherapy x-rays. Online University of Wollongong.

Chegeni, N., Rahim, F., Tahmasbi, M., Farzanegan, Z., & Hosseini, S. K. (2021). Measurement and calculation of electron contamination for radiotherapy photon mode. Jundishapur Journal of Health Sciences, 13(1), 1–9.

De-Colle, C., Nachbar, M., Mӧnnich, D., Boeke, S., Gani, C., Weidner, N., Heinrich, V., Winter, J., Tsitsekidis, S., Dohm, O., Zips, D., & Thorwarth, D. (2021). Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator. Clinical and Translational Radiation Oncology, 27(1), 103–108.

Efendi, M. A., Funsian, A., Chittrakarn, T., & Bhongsuwan, T. (2017). Monte carlo simulation of 6 MV flattening filter free photon beam of truebeam STx LINAC at songklanagarind hospital. Sains Malaysiana, 46(9), 1407–1411.

Ezzati, A. O., Studenski, M. T., & Gohari, M. (2020). Spatial mesh-based surface source model for the electron contamination of an 18 MV photon beams. Journal of Medical Physics, 45(4), 221–225.

Furuta, T., & Sato, T. (2021). Medical application of particle and heavy ion transport code system PHITS. Radiological Physics and Technology, 14(3), 215–225.

Gonzalez, L. A., Angelucci, M., Larciprete, R., & Cimino, R. (2017). The secondary electron yield of noble metal surfaces. AIP Advances, 7(11), 1–7.

Han, W., Zheng, M., Banerjee, A., Luo, Y. Z., Shen, L., & Khursheed, A. (2020). Quantitative material analysis using secondary electron energy spectromicroscopy. Scientific Reports, 10(1), 1–14.

Hasan, R. H., Essa, S. I., & AL-Naqqash, M. A. (2019). Depth dose measurement in water phantom for two X-ray energies (6MeV and 10MeV) in comparison with actual planning. Iraqi Journal of Science, 60(8), 1689–1693.

Hashimoto, S., Iwamoto, O., Iwamoto, Y., Sato, T., & Niita, K. (2015). PHITS simulation of quasi-monoenergetic neutron sources from 7Li(p,n) reactions. Energy Procedia, 71(1), 191–196.

Jagtap, A. S., Palani Selvam, T., Patil, B. J., Chavan, S. T., Pethe, S. N., Kulkarni, G., Dahiwale, S. S., Bhoraskar, V. N., & Dhole, S. D. (2016). Monte Carlo based investigations of electron contamination from telecobalt unit head in build up region and its impact on surface dose. Applied Radiation and Isotopes, 118(1), 175–181.

Jo, I. Y., Kim, S. W., & Son, S. H. (2017). Dosimetric evaluation of the skin-sparing effects of 3-dimensional conformal radiotherapy and intensity-modulated radiotherapy for left breast cancer. Oncotarget, 8(2), 3059–3063.

Lye, J. E., Butler, D. J., & Webb, D. V. (2010). Enhanced epidermal dose caused by localized electron contamination from lead cutouts used in kilovoltage radiotherapy. Medical Physics, 37(8), 3935–3939.

Mazzeo, E., Rubino, L., Buglione, M., Antognoni, P., Magrini, S. M., Bertoni, F., Parmiggiani, M., Barbieri, P., & Bertoni, F. (2014). The current management of mycosis fungoides and Sézary syndrome and the role of radiotherapy: Principles and indications. Reports of Practical Oncology and Radiotherapy, 19(2), 77–91.

Mesbahi, A. (2009). A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam. Applied Radiation and Isotopes, 67(1), 55–60.

Oltulu, P., Ince, B., Kökbudak, N., Findik, S., & Kiliç, F. (2018). Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique. Turkish Journal of Plastic Surgery, 26(2), 56–61.

Petti, P. L., Goodman, M. S., Gabriel, T. A., & Mohan, R. (1983). Investigation of buildup dose from electron contamination of clinical photon beams. Medical Physics, 10(1), 18–24.

Podgorsak, E. B. (2005). Radiation oncology physics. IAEA.

Sadrollahi, A., Nuesken, F., Licht, N., Rübe, C., & Dzierma, Y. (2019). Monte-Carlo simulation of the Siemens Artiste linear accelerator flat 6 MV and flattening-filter-free 7 MV beam line. PLoS ONE, 14(1), 1–17.

Sato, T., Niita, K., Matsuda, N., Hashimoto, S., Iwamoto, Y., Furuta, T., Noda, S., Ogawa, T., Iwase, H., Nakashima, H., Fukahori, T., Okumura, K., Kai, T., Chiba, S., & Sihver, L. (2015). Overview of particle and heavy ion transport code system PHITS. Annals of Nuclear Energy, 82(1), 110–115.

Seif, F., & Bayatiani, M. R. (2015). Evaluation of electron contamination in cancer treatment with megavoltage photon beams: Monte Carlo study. J Biomed Phys Eng 2015;, 5(1), 31–38.

Smit, C., & du Plessis, F. C. P. (2015). Deriving electron contamination characteristics using Monte Carlo beam data. Physica Medica, 31(2015), 1–14.

Vichi, S., Dean, D., Ricci, S., Zagni, F., Berardi, P., & Mostacci, D. (2020). Activation study of a 15MeV LINAC via Monte Carlo simulations. Radiation Physics and Chemistry, 172(1), 1–6.

Yadav, G., Yadav, R. S., & Kumar, A. (2010). Effect of various physical parameters on surface and build-up dose for 15-MV X-rays. Journal of Medical Physics, 35(4), 202–206.

Yani, S., Dirgayussa, I. G. E., Rhani, M. F., Soh, R. C. X., Haryanto, F., & Arif, I. (2016). Monte Carlo study on electron contamination and output factors of small field dosimetry in 6 MV photon beam. Smart Science, 4(2), 87–94.

Yeh, B. M., FitzGerald, P. F., Edic, P. M., Lambert, J. W., Colborn, R. E., Marino, M. E., Evans, P. M., Roberts, J. C., Wang, Z. J., Wong, M. J., & Bonitatibus, P. J. (2017). Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies. Advanced Drug Delivery Reviews, 113(23), 201–222.



  • There are currently no refbacks.

Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.