Pemanfaatan Science In Box dalam Pembelajaran Berbasis Inkuiri di SMP untuk Meningkatkan Penguasaan Konsep Fluida Statis

Abdurrahman Abdurrahman

Abstract


The purpose of this study is to describe the effectiveness of engagement in science across science teaching and learning activities using for Statics Fluid concept in the context of scientific inquiry. Action reseach method was used to solve problem of lack of practical work in science students. The analysis employs a quantitative approach that includes descriptive and inferential statistics to examine characteristics and effectiveness SBFS developed. The research result showed that there was significant main effects of inquiry instruction and teaching context  using Science in Box on student conceptual change. The result suggested that Teaching strategies that actively engage students in the learning process through scientific investigations using practical work are more likely to increase conceptual understanding than are strategies that rely on more conventional techniques.

Tujuan dari penelitian ini ialah untuk menjelaskan efektifitas keterikatan ilmu sains dengan kegiatan pengajaran dan pembelajaran sains menggunakan konsep Fluida Statis berbasis inkuiri. Metode action research digunakan untuk memecahkan masalah kurangnya pelaksanaan praktik pada siswa sains. Analisis data menggunakan pendekatan kuantitatif yang meliputi statistik deskriptif dan inferensial untuk menguji karakteristik dan efektifitas SBFS yang dikembangkan. Hasil penelitian menunjukkan bahwa ada pengaruh yang signifikan dari pembelajran dan kpengajaran inkuiri menggunakan Science in Box terhadap penguasaan konsep fluida statis siswa. Hasilnya menunjukkan bahwa strategi Pengajaran yang secara aktif melibatkan siswa dalam proses pembelajaran melalui penyelidikan ilmiah menggunakan kerja praktek lebih mungkin untuk meningkatkan penguasaan konseptual siswa dibandingkan strategi yang mengandalkan teknik yang lebih konvensional.


Keywords


Science in Box; Statics Fluid; Inquiry learning

Full Text:

PDF

References


Abrahams, I. & Milar, R. (2012). Does Practical Work Really Work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), pp. 1945-1969.

Akpan J, Strayer J. (2010). Which comes first the use of computer simulation of frog dissection or conventional dissection as academic exercise? J Comput Math Sci Teach 29(2):113-138

Bybee, R. W. (2006). Enhancing science teaching and student learning: A BSCS perspective. Paper presented at the ACER Research Conference. Canberra, ACT, Australia

Bunterm, T., Lee, K., Ng Lan Kong, J., Srikoon, S., Vangpoomnyai, P., Rattanavongsa, J., dan Rachahoon, G. (2014). Do Difeerent Levels of Inquiry Lead to Different Learning Outcomes? A Comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937-1959.

Chiappetta, E.L., dan Adams, A.D. (2004). Inquiry-based instruction: Understanding how content and process go hand-in-hand with school science. The science Teacher, 71(2), 46-50.

Cohen, L. & Manion, L. (1989). Research Methods in Education. Routeledge and Kegan Paul: London.

Fraenkel, J. R., and N. E. Wallen. (2008). Introduction to qualitative research: How to Design and Evaluate Research in Education, 7th ed. Boston, MA: McGraw-Hill International Edition.

Huppert J, Lomask SM, Lazarowitz R. (2002) Computer simulations in the high school: students’ cognitive stages, science process skills and academic achievement in microbiology. Int J Sci Educ, 24(8):803-821

Kirschner P, Huisman W (1998) ‘Dry laboratories’ in science education; computer-based practical work. Int J Sci Educ, 20(6): 665

Klahr D, Triona LM, Williams C. (2007) Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. J Res Sci Teach, 44(1):183-203. doi:10.1002/tea.20152

Millar, R., Le Maréchal, J.-F., & Tiberghien, A. (1999). ‘Mapping’ the domain: Varieties of practical work. In J. Leach & A. Paulsen (Eds.), Practical work in science education-Recent research studies (pp. 33-59). Roskilde/Dordrecht, The Netherlands: Roskilde University Press/Kluwe

NRC (National Research Council). (1996). National science education standards. Washington,

DC: National Academies Press.

NSTA (National Science Teacher Association). (2007) NSTA position statement: the use of computers in science education.

Ozgelen, S. (2012). Students Science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science & Technology Education, 8(4), 283-292.

Pedaste, M., Mäeots, M., Siiman, L.A., de Jong, T., van Riesen, S.A.N., Kamp, E.T., Manoli, C.C., Zacharia, Z.C., Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, pp.47-61

Stone DC. (2007) Teaching chromatography using virtual laboratory exercises. J Chem Educ 84(9), 1488-null. doi:10.1021/ed084p1 488

Toplis, R. (2011). Student’s views about secondary school science lessons: The role of practical work. Research in Science Education. DOI: 10.1007/s11165-011-9209-6.

Zacharia Z, Olympiou G, Papaevripidou M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. J Res Sci Teach 45(9):1021-1035. doi:10.1002/tea.20260.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v5i2.120

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.