How Do We See The Non Luminous Objects? 12-13 Years Old Students’ Mental Representation of Vision

Konstantinos Ravanis


In this paper, we present the findings of a research which has two objectives: firstly, it recorded 12-13 years old (7th grade) students’ mental representation regarding the vision of non-luminous objects, and, secondly, it emphasized on the relative cognitive fields. The research was done through interviews of 107 urban area students in Greece. The students were asked to explain how objects become visible, stressing the following themes: The manner in which our eyes help us see the objects, whether natural or artificial light helps us see the objects and in what way, and if the objects emit light. The data analysis led to the recording of the students' basic mental representation on the one hand, while on the other hand emphasized the reemission or reflection of light by the luminous objects as a basic mental representation.From the research results, it can be concluded that through a teaching intervention based on mental representation we can foster and enhance scientific thinking and learning about light and vision.



light; mental representation; vision; 12-13 years old students

Full Text:



Allen, M., & Kambouri-Danos, M. (2016). Substantive conceptual development in preschool science: contemporary issues and future directions. Early Child Development and Care, 187(2), 181-191.

Ampartzaki, M., & Kalogiannakis, M. (2016). Astronomy in Early Childhood Education: a concept-based approach. Early Childhood Education Journal, 44, 169-179.

Anthopoulou, V.,& Ravanis, K. (2016). How do we see when the light is not “enough”? Mental representation of pre-service preschool teachers. International Education and Research Journal, 2(8), 30-32.

Castro, D. (2013). Light mental representation of 11-12-year-old students. Journal of Social Science Research, 2(1), 35-39.

Castro, D., & Rodriguez, J. (2014). 8-9-year-old pupils' mental representation of light: teaching perspectives. Journal of Advances in Natural Sciences, 2(1), 40-44.

De Hosson, C. (2004).Contribution à l’analyse des interactions entre histoire et didactique des sciences. Élaboration d’un support d’enseignement du mécanisme optique de la vision pour l’école primaire et le collège et premiers éléments d’évaluation. Université Paris-Diderot - Paris VII, France.

Dedes, C. (2005). The mechanism of vision: Conceptual similarities between historical models and children’s representation. Science & Education, 14, 699-712.

Dedes, C., & Ravanis, K. (2009a). Teaching image formation by extended light sources: The use of a model derived from the history of science. Research in Science Education, 39(1), 57-73.

Dedes, C., & Ravanis, K. (2009b). History of science and conceptual change: the formation of shadows by extended light sources. Science & Education, 18(9), 1135-1151.

Delserieys, A., Impedovo, M.-A., Fragkiadaki, G., & Kampeza, M. (2017). Using drawings to explore preschool children’s ideas about shadow formation. Review of Science, Mathematics and ICT Education, 11(1), 55-69.

Delserieys, A., Jegou, C., Boilevin, J.-M., & Ravanis, K. (2018). Precursor model and preschool science learning about shadows formation. Research in Science and Technological Education, DOI 10.1080/02635143.2017.1353960.

Fleck, S., & Hachet, M. (2015). Helios: a tangible and augmented environment to learn optical phenomena in astronomy. In Proceedings of ETOP - Education and Training in Optics and Photonics (pp. 979331-979336), Bordeaux, France: SPIE.

Gallegos Cázares, L., Flores Camacho, F., & Calderón Canales, E. (2009). Preschool science learning: The construction of representation and explanations about color, shadows, light and images. Review of Science, Mathematics and ICT Education, 3(1), 49-73.

Genzling, J.-C., & Pierrard, M.-A. (1994). La modélisation, la description, la conceptualisation, l’explication et la prédiction. In J.-L. Martinand (Ed.), Nouveaux regards sur l’enseignement et l’apprentissage de la modélisation en sciences (pp. 47-78). Paris: INRP.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2015). Teaching optics perspectives: 10-11 year old pupils' representation of light. International Education & Research Journal, 1(3), 4-6.

Herakleioti, E., & Pantidos, P. (2016). The contribution of the human body in young children’s explanations about shadow formation. Research in Science Education, 46(1), 21-42.

Impedovo, M. A., Delserieys-Pedregosa, A., Jégou, C., & Ravanis, K. (2017). Shadow formation at preschool from a socio-materiality perspective. Research in Science Education, 47(3), 579-601.

Kaltakci-Gurel1, D., Eryilmaz, A., & McDermott, L. C. (2016). Identifying pre-service physics teachers’misconceptions and conceptual difficulties about geometrical optics. European Journal of Physics, 37(4), 045705-35.

Kaltakci-Gurel1, D., Eryilmaz, A., & McDermott, L. C. (2017). Development and application of a four-tier test to assess pre-service physics teachers’misconceptions about geometrical optics. Research in Science & Technological Education, 35(2), 238-260

Kokologiannaki, V., & Ravanis, K. (2012). Mental representation of sixth graders in Greece for the mechanism of vision in conditions of day and night. International Journal of Research in Education Methodology, 2(1), 78-82.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representation of the mechanism of vision. New Educational Review, 33(3), 167-184.

Kuo, Y. R., Won, M., Zadnik, M., Siddiqui, S., & Treagust, D. F. (2017). Learning Optics with multiple representation: not as simple as expected. In D. Treagust, R. Duit & H. Fischer (Eds), Multiple representation in Physics Education. Models and modeling in Science Education, v. 10 (pp. 123-138). Cham: Springer.

Küçüközer H., & Bostan A. (2010). Ideas of kindergarten students on the Day/Night cycles, the seasons and the moon phases. Journal of Theory and Practice in Education,6(2), 267-280.

Lemmer, M., Kriek, J., & Erasmus, B. (2018). Analysis of students’ conceptions of basic magnetism from a complex systems perspective. Research in Science Education, 018-9693-z.

Meli, K., Koliopoulos, D., Lavidas, K., & Papalexiou, G. (2016). Upper secondary school students’ understanding of adiabatic compression. Review of Science, Mathematics and ICT Education, 10(2), 131-147.

Métioui, A., & Trudel, L. (2010). Evolution of student teachers' conceptions about light following constructivist didactic activities. In M. Nodzynsk & J. R. Pasko (Dir.). Research in Didactics of the Sciences: Monograph (pp. 249–252). Krakov, Poland: Pedagogical University of Krakov.

Métioui, A., & Trudel, L. (2012). The model of the rectilinear propagation of light and the study of the variation of the size of a shadow. US-China Education Review, 2(9), 173-186.

Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representation of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191-200.

Ouasri, A. (2017). Analyse des difficultés des élèves marocains de 15-16 ans en résolution de problèmes de mécanique (mouvement et repos, interactions mécaniques et forces, poids et masse). Review of Science, Mathematics and ICT Education, 11(2), 69-92.

Pantidos, P., Herakleioti, E., &Chachlioutaki, M.-E. (2017). Reanalysing children’s responses on shadow formation: a comparative approach to bodily expressions and verbal discourse. International Journal of Science Education, 39(18), 2508-2527.

Ravanis, K. (2000). How do we see objects that reflect light? Experiential mental representation of students of 12-13 years old, about vision. In N. Valanidis (Ed.), Second Panhellenic Conference on Teaching of Science and Application of New Technologies in Education (v. I, pp. 214-221) Nicosia: Department of Education, University of Cyprus.

Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectsifs-Obstacles et Médiation-Tutelle : concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1-11.

Ravanis, K. (2012). Représentations des enfants de 10 ans sur le concept de lumière: perspectives piagétiennes. Schème - RevistaEletrônica de Psicologia e EpistemologiaGenéticas, 4(1), 70-84.

Ravanis, K., & Boilevin, J.-M. (2009). A comparative approach to the representation of light for five-, eight- and ten-year-old children: didactical perspectives. Journal of Baltic Science Education, 8(3), 182-190.

Rodriguez, J., & Castro, D. (2016). Changing 8-9-year-old pupil's mental representation of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Selley, N. J. (1996). Children’s ideas on light and vision. International Journal of Science Education, 18(6), 713-723.

Tekos, G., & Solomonidou, C. (2009). Constructivist learning and teaching of optics concepts using ICT tools in Greek primary school: a pilot study. Journal of Science Education and Technology, 18, 415-428.

Tsihouridis, C., Vavougios, D., Ioannidis, G. S., Alexias, A., Argyropoulos, C.,& Poulios, S. (2014). Using sensors and data-loggers in an integrated mobile school-lab setting to teach Light and Optics. In Interactive Collaborative Learning (ICL), 2014 International Conference on Interactive Collaborative Learning (pp. 439-445). Dubai, United Arab Emirates: IEEE Xplore.

Valanides, N., & Efthymiou, I. (2012). Student representation of progressively more complex shadow and penumbra phenomena: a way towards conceptual change. In M. D. Avgerinou, B. Chandler, P. Search, & M. Terzic (Eds), New horizons in visual literacy (pp. 216-230). Šiauliai, Lithuania: Scientia Educologica.



  • There are currently no refbacks.

Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.