Synthesis and Characterization of the Microstructure and Functional Group Bond of Fe3o4 Nanoparticles from Natural Iron Sand in Tobelo North Halmahera

Ferni Malega, I Putu Tedy Indrayana, Edi Suharyadi

Abstract


The Fe3O4 nanoparticles have been successfully synthesized from natural iron sand by using co-precipitation method at a temperature of 56oC. The elemental identification, structural characterization, and bonding analysis were carried out using XRF, XRD, and FTIR, respectively. The sample nanoparticles contain elements of Al, P, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Rb, Re, Bi, and Fe. The composition of Fe element is 87.37%. The sample of the nanoparticle exhibited as the Fe3O4 which was shown by the diffraction pattern that belongs to a cubic spinel structure of Fe3O4. The crystallite size of the nanoparticle is 42.25 ± 0.42 nm. The lattice parameter was found at 8.384 ± 0.049 Å. The crystallite density is 5.232 103 kg/m3 while the lattice strain is 1.413 10-3/line. The FTIR spectra confirm that the existence of Fe-O stretching vibration in the range frequency of 658 cm-1-506 cm-1


Keywords


characterization; coprecipitation; microstructure; iron sand; synthesis

Full Text:

PDF

References


Taufik, A., Saputro, R.E., Sunaryono, S., Hidayat, N., Hidayat, A., Mufti, N., Diantoro, M., Patriati, A., Mujamilah, M., Putra, E. G. R., & Nur, H. (2017). Fabrication of Magnetite Nanoparticles Dispersed in Olive Oil and Their Structural and Magnetic Investigations. In IOP Conf. Series: Materials Science and Engineering. Malang: IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/202/1/012008.

Bilalodin, Sunardy, & Effendy, M. (2013). Analisis Kandungan Senyawa Kimia dan Uji Sifat Magnetik Pasir Besi Pantai Ambal. Jurnal Fisika Indonesia, 17, 29–31.

Dewi, S., Puji, F., & Suharyadi, E. (2014). Studi Penurunan Kadar Logam Fe dan Co pada Limbah Cair dengan Sistem Purifikasi Berbasis Adsorben Nanopartikel Magnetik Fe3O4. Jurnal Fisika Indonesia, 18, 16–19.

Frey, N. A., Peng, S., Cheng, K., & Sun, S. (2009). Magnetic Nanoparticles : Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage. Chemical Society Review, 2532–2542. https://doi.org/10.1039/b815548h.

Jaswal, L., Singh, B., & Jaswal, L. (2014). Ferrite materials : A Chronological Review. Journal of Integrated Science & Technology, 2(2), 69–71.

Jianling, L. I., Decai, L. I., Shaolan, Z., Hongchao, C. U. I., & Cui, W. (2011). Analysis of the Factors Affecting the Magnetic Characteristics of Nano-Fe3O4 Particles. Chinese Science Bulletin, 56(8), 803–810. https://doi.org/10.1007/s11434-010-4126-z.

Li, J., Fan, M., Brown, R. C., Van, J. H., Wang, J., Wang, W., & Song, Y. (2010). Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review. Critical Reviews in Environmental Science and Technology, 36, 37–41.

Linda, D., & Pratapa, S. (2014). Sintesis Fe2O3 dari Pasir Besi dengan Metode Logam Terlarut Asam Klorida. Jurnal Sains Dan Seni Pomits, 3(2), 33–35.

Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Nanoparticles in a Large pH Window with Different Bases. Materials, 6, 5549–5567. https://doi.org/10.3390/ma6125549.

Montoro. (1938). Miscibilita Fra Gli Ossidi Salini di Ferroe di Manganese. Gazzetta Chimica Italiana, 68, 728–733.

Nuzully, S., Kato, T., Iwata, S., & Suharyadi, E. (2013). Pengaruh Konsentrasi Polyethylene Glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe3O4. Jurnal Fisika Indonesia, 17, 35–40.

Rani, S., & Varma, G. D. (2015). Superparamagnetism and Metamagnetic transition in Fe3O4 Nanoparticles Synthesized via Coprecipitation Method at Different pH. Physica B: Physics of Condensed Matter. https://doi.org/10.1016/-j.physb.2015.05.016.

Setiadi, E. A., Sebayang, P., Ginting, M., Sari, A. Y., Kurniawan, C., Saragih, S. ., & Simamora, P. (2016). The synthesization of Fe3O4 Magnetic Nanoparticles Based on Natural Iron Sand by Coprecipitation Method for the Used of the Adsorption of Cu and Pb Ions. Journal of Physics: Conference Series. https://doi.org/-10.1088/1742-6596/776/1/012020.

Tang, S. C. N., & Lo, I. M. C. (2013). Magnetic nanoparticles : Essential Factors for Sustainable Environmental Applications. Water Research, 47(8), 2613–2632. https://doi.org/10.1016/-j.watres.2013.02.039.

Taufiq, A., Triwikantoro, T., Pratapa, S., & Darminto. (2008). Sintesis Partikel Nano Fe3-xMnxO4 Berbasis Pasir Besi dan Karakterisasi Struktur serta Kemagnetannya Sintesis Partikel Nano Fe3-xMnxO4 Berbasis Pasir Besi. Jurnal Nanosains & Nanoteknologi, 1(2).

Triwikantoro, Yahya, & Darminto. (2011). Synthesis of Fe3O4 Nanoparticles from Iron Sands and Effects of Ni and Zn Substitution on Structures and Magnetic Properties. Journal of Materials Science and Engineering A, 1(2), 182–189.

Valenzuela. (2012). Novel Applications of Ferrites. Physics Research International, 2012, 9. https://doi.org/-10.1155/2012/591839.

Wang, B., Wei, Q., & Qu, S. (2013). Synthesis and Characterization of Uniform and Crystalline Magnetite Nanoparticles via Oxidation-precipitation and Modified co-precipitation Methods. International Journal of Electrochemical Science, 8, 3786–3793.

Xu, P., Ming, G., Lian, D., Ling, C., Hu, S., & Hua, M. (2012). The Use of Iron Oxide Nanomaterials in Wastewater Treatment : A Review. Science of the Total Environment, 424, 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v7i2.2913

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.