The Potential of Pepper Shell (Piper Nigrum) for Supercapacitor Electrodes

https://doi.org/10.24042/jipfalbiruni.v8i1.3780

Widodo Budi Kurniawan, Anisa Indriawati, Dewi Marina, Erman Taer

Abstract


A study has been carried out on supercapacitor electrodes as an electrical energy storage media based on pepper shell activated carbon. The Synthesis is done by mixing the waste carbon pepper shell with an activator HCl with a ratio of 1 : 4. Furthermore, the activated carbon is activated physically by using a pyrolysis temperature of 600 0C. The SEM results indicate that carbon has a porous morphology with a pore size of 24.6 nm which is a mesoporous category. Electrochemical properties are analyzed using cyclic voltammetry (CV). The CV results at the scan rate of 1 mV/s indicate the specific capacitance value generated is 0.45 Fg-1. The results showed that pepper shell waste has the potential to be used as a supercapacitor electrode material

Keywords


activated carbon; BET; cyclic voltammetry; pepper shell waste; SEM

Full Text:

PDF

References


Arie, A. A., Kristianto, H., Halim, M., & Lee, J. K. (2016). Synthesis and modification of activated carbon originated from Indonesian local Orange peel for lithium ion Capacitor’s cathode. Journal of Solid State Electrochemistry. https://doi.org/10.1007/s10008-016-3445-7

Arif, E. N., Taer, E., & Farma, R. (2015). Pembuatan dan Karakterisasi Sel Superkapasitor Menggunakan Karbon Aktif Monolit dari Kayu Karet Berdasarkan Variasi Konsentrasi HNO3. JOM FMIPA, 2(1), 49–55.

Ariyanto, T., Prasetyo, I., & Rochmadi, R. (2012). Pengaruh Struktur Pori Terhadap Kapasitansi Elektroda Superkapasitor yang Dibuat Dari Karbon Nanopori. Reaktor, 14(1), 25–32.

Efendi, Z., & Astuti. (2016). Pengaruh Suhu Aktivasi Terhadap Morfologi dan Jumlah Pori Karbon Aktif Tempurung Kemiri sebagai Elektroda. Jurnal Fisika Unand, 5(4), 297–302.

Farma, R., Melinda, V., Taer, E., & Hamzah, Y. (2017). Cyclic V oltammetry Sel Superkapasitor Dengan Variasi Konsentrasi Aktivator Kalium Hidroksida. Jurnal Fisika Indonesia, 21(2), 20–24.

Hao, L., Li, X., & Zhi, L. (2013). Carbonaceous electrode materials for supercapacitors. Advanced Materials, 25(28), 3899–3904. https://doi.org/10.1002/adma.201301204.

Hendriansyah, R., Prakoso, T., Widiatmoko, P., Nurdin, I., & Devianto, H. (2018). Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. In MATEC Web of Conferences. https://doi.org/DOI: https://doi.org/10.1051/matecconf/201815603018.

Kurniawan, P., Taer, E., Malik, U., & Taslim, R. (2018). Pengaruh Konsentrasi Koh Terhadap Sifat Fisis dan Elektrokimia Elektroda Karbon dari Limbah Kulit Durian Sebagai Sel Superkapasitor. Jurnal Komunikasi Fisika Indonesia, 15(1), 85–92.

Li, F., Shi, J. J., & Qin, X. (2010). Synthesis and supercapacitor characteristics of PANI/CNTs composites. Chinese Science Bulletin, 55(11), 1100–1106. https://doi.org/10.1007/s11434-009-0573-9.

Mubarak, Z., Maulani, N., & Hidayat, J. (2018). A Comparison of the Utilization of Carbon Nanopowder and Activated Carbon as Counter Electrode for Monolithic Dye-Sensitized Solar Cells ( DSSC ), 18(1), 15–20. https://doi.org/10.14203/jet.v18.15-20.

Rosalina, Suprihatin, & Karo, P. K. (2017). Pengaruh Luas Permukaan Spesifik terhadap Kapasitansi Spesifik Elektrode Zeolit Akibat Variasi Suhu Kalsinasi. Jurnal Teori Dan Aplikasi Fisika, 5(1), 37–42.

Simon, P., & Gogotsi, Y. (2010). Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3457–3467. https://doi.org/10.1098/rsta.2010.0109.

Sing, K. S. ., Everett, D. H., R.A.W.Haul, L, M., Pierotti, R. A., Rouqueol, J., & Siemieniewska, T. (1985). Reporting Physisorption Data for Gas/Solid System with Special Reference to the Determination of Surface Area and Porosity. Pure & App!. Chem, 57(4), 603–619.

Syarif, N., & Pardede, M. C. (1985). Hydrothermal Assisted Microwave Pyrolysis of Water Hyacinth for Electrochemical Capacitors Electrodes. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 5(2), 95–104.

Xiao, Z., Chen, W., Liu, K., Cui, P., & Zhan, D. (2018). Porous Biomass Carbon Derived from Peanut Shells as Electrode Materials with Enhanced Electrochemical Performance for Supercapacitors, 13, 5370–5381. https://doi.org/10.20964/2018.06.54.

Zulkifli, Awitdrus, & Taer, E. (2018). Studi Awal Pemanfaatan Purun Tikus Sebagai Elektroda Superkapasitor Menggunakan Aktivasi Uap Air The Preliminary Study of Utilization of Water Chestnut as Supercapacitor Electrode Using Steam Activation. J.Aceh Phys.Soc, 7(1), 30–34




DOI: https://doi.org/10.24042/jipfalbiruni.v8i1.3780

Article Metrics

Abstract views : 96 | PDF downloads : 42

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Ilmiah Pendidikan Fisika Al-Biruni

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

Jurnal Ilmiah Pendidikan Fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © UIN Raden Intan Lampung. All rights reservedp-ISSN 2303-1832 | e-ISSN 2503-023X