Problem-Solving Approach in Multiple Representations of Qualitative and Quantitative Problems in Kinematics Motion

Ade Tegar Saputra, Jumadi Jumadi, Debora Wibianne Paramitha, Siti Sarah

Abstract


The study aims to find the approach used by students in solving physics problems with symbol and graph representations, and also to find out the student's approach to solving qualitative and quantitative questions. This is related to student good problem solvers use multiple representations to solve the problem. They use the qualitative and quantitative approach in a physics problem. The type of research conducted to find out this is quantitative descriptive. In this study, data were obtained by tests and interviews. We give four problems in kinematic motions to undergraduate students. The problem consists of a graphic and symbol representation of qualitative and quantitative problems. The result shows that the quantitative problem of symbol and graphic representation, all of the students only solve the problem without qualitative analysis. That proves in these problems all of the students become a novice problem solver in this problem. Different from it, 84% of students not only solve the qualitative physics problem in symbol representation problems with the qualitative approach but also, we solve with quantitative analysis. On the other hand, they only explain the graph representations problem with descriptions


Keywords


good problem-solvers; kinematic motions; multiple representations

Full Text:

PDF

References


Aviani, I., & Me, V. (2015). Drawing and using free body diagrams : Why it may be better not to decompose forces. 020137, 1–14. https://doi.org/10.1103/PhysRevSTPER.11.020137.

Azizah, R., Yuliati, L., & Latifah, E. (2015). Kesulitan Pemecahan Masalah Fisika Pada Siswa SMA. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 5(2), 44–50.

Bollen, L., Kampen, P. Van, Baily, C., Kelly, M., & Cock, M. De. (2017). Student difficulties regarding symbolic and graphical representations of vector fields. Physical Review Physics Education Research, 13(020109), 1–17. https://doi.org/10.1103/PhysRevPhysEducRes.13.020109.

Bunawan, W., Setiawan, A., Rusli, A., & Nahadi. (2015). Penilaian Pemahaman Representasi Grafik Materi Optika Geometri Menggunakan Tes Diagnostik. Cakrawala Pendidikan, 2(34), 257–267.

Christensen, W. M., & Thompson, J. R. (2012). Investigating graphical representations of slope and derivative without a physics context. Physical Review Special Topics - Physics Education Research, 8(2), 1–5. https://doi.org/10.1103/PhysRevSTPER.8.023101.

Docktor, J. L., Strand, N. E., Mestre, J. P., & Ross, B. H. (2015). Conceptual problem solving in high school physics. 020106, 1–13. https://doi.org/10.1103/PhysRevSTPER.11.020106.

Emigh, P. J., Passante, G., & Shaffer, P. S. (2015). Student understanding of time dependence in quantum mechanics. Physical Review Special Topics - Physics Education Research, 11(2), 1–12. https://doi.org/10.1103/PhysRevSTPER.11.020112.

Fahmi, I. (2017). Pengaruh Kepribadian Dan Persepsi Kerja Guru Terhadap Organizational Citizenship Behavior (OCB) Guru SMA Negeri Se-Kabupaten Karawang. Jurnal Pendidikan Pascasarjarana UNSIKA, 1(01), 112–121.

Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary affordance. Physical Review Special Topics - Physics Education Research, 10(2), 1–13. https://doi.org/10.1103/PhysRevSTPER.10.020129.

Heckler, A. F., & Scaife, T. M. (2015). Adding and Subtracting Vectors : the Problem with the Arrow Representation. 11(1), 1–17. https://doi.org/10.1103/PhysRevSTPER.11.010101.

Hung, C., & Wu, H. (2018). Tenth graders ’ problem-solving performance , self-efficacy , and perceptions of physics problems with different representational formats. Physical Review Physics Education Research, 14(2). https://doi.org/10.1103/PhysRevPhysEducRes.14.020114.

Ibrahim, B., Ding, L., Heckler, A. F., White, D. R., & Badeau, R. (2017). How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance. Physical Review Physics Education Research, 13(2), 1–22. https://doi.org/10.1103/PhysRevPhysEducRes.13.020120

Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. 8(1), 1–19. https://doi.org/10.1103/PhysRevSTPER.8.010126.

Kustusch, M. B. (2016). Assessing the impact of representational and contextual problem features on student use of right-hand rules. 12(1), 1–22. https://doi.org/10.1103/PhysRevPhysEducRes.12.010102.

Leak, A. E., Rothwell, S. L., Olivera, J., Zwickl, B., & Vosburg, J. (2017). Examining problem solving in physics-intensive Ph . D . research. 13(2), 1–13. https://doi.org/10.1103/PhysRevPhysEducRes.13.020101.

Lin, S. (2015). Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions. American Physical Society. 020105, 1–19. https://doi.org/10.1103/PhysRevSTPER.11.020105.

Malik, A., Ertikanto, C., & Suyatna, A. (2015). Deskripsi Kebutuhan HOTS Assesment pada Pembelajaran Fisika dengan Metode Inkuiri Terbimbing. Prosiding Seminar Nasional Fisika (E-Journal) SNF2015, 4, 1–4.

Maries, A., & Singh, C. (2018). Case of two electrostatics problems : Can providing a diagram adversely impact introductory physics students ’ problem solving performance ? Physical Review Physics Education Research, 14(1). https://doi.org/10.1103/PhysRevPhysEducRes.14.010114.

Marshman, E., & Singh, C. (2015). Framework for understanding the patterns of student difficulties in quantum mechanics. Physical Review Special Topics - Physics Education Research, 11(2), 1–26. https://doi.org/10.1103/PhysRevSTPER.11.020119.

Nieminen, P., Savinainen, A., & Viiri, J. (2010). Force concept inventory-based multiple-choice test for investigating students’ representational consistency. Physical Review Special Topics - Physics Education Research, 6(2), 1–12. https://doi.org/10.1103/PhysRevSTPER.6.020109

Prahani, B. K., Soegimin, W. ., & Yuanita, L. (2015). Pengembangan Perangkat Pembelajaran Fisika Model Inkuiri Terbimbing untuk Melatihkan Kemampuan Multi Representasi Siswa SMA. Pendidikan Sains Pascasarjana Universitas Negeri Surabaya, 4(2).

Prastiwi, A., Sriyono, & Nurhidayati. (2016). Pengembangan Modul Fisika Berbasis Masalah Untuk Meningkatkan High Order Thinking Skills (HOTS) Siswa SMA. Jurnal Radiasi, 9(1 Oktober), 1–6.

Rusilowati, A. (2017). Pola pemecahan masalah berdasarkan representasi siswa dalam membangun pemahaman konsep fisika. 1(1), 1–7.

Scherr, R. E., Plisch, M., & Goertzen, R. M. (2017). Sustaining Physics Teacher Education Coalition programs in physics teacher education. Physical Review Physics Education Research, 13(1), 1–16. https://doi.org/10.1103/PhysRevPhysEducRes.13.010111.

Supeno, S., Subiki, S., & Rohma, L. W. (2018). Students’ Ability In Solving Physics Problems on Newtons’ Law of Motion. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 59. https://doi.org/10.24042/jipfalbiruni.v7i1.2247.

Susac, A., Bubic, A., Kazotti, E., Planinic, M., & Palmovic, M. (2018). Student understanding of graph slope and area under a graph : A comparison of physics and nonphysics students. Physical Review Physics Education Research, 14(2), 20109. https://doi.org/10.1103/PhysRevPhysEducRes.14.020109.

Susac, A., Bubic, A., Martinjak, P., Planinic, M., & Palmovic, M. (2017). Graphical representations of data improve student understanding of measurement and uncertainty : An eye-tracking study. 020125. https://doi.org/10.1103/PhysRevPhysEducRes.13.020125.

Teodorescu, R. E., Bennhold, C., Feldman, G., & Medsker, L. (2013). New approach to analyzing physics problems : A Taxonomy of Introductory Physics Problems. 010103(January), 1–20. https://doi.org/10.1103/PhysRevSTPER.9.010103.

Ubaidillah, M. (2016). Pengembangan LKPD Fisika Berbasis Problem Solving untuk Meningkatkan Keterampilan Proses Sains dan Keterampilan Berpikir Tingkat Tinggi. Jurnal EduFisika, 01(02), 9–20.

Widianingtiyas, L., Siswoyo, S., & Bakri, F. (2017). Pengaruh Pendekatan Multi Representasi dalam Pembelajaran Fisika Terhadap Kemampuan Kognitif Siswa SMA. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 01(1), 31–38. https://doi.org/10.21009/1.01105.

Yuwono, G. R., Mahardika, I. ketut, & Gani, A. A. (2016). Pengaruh Model Pembelajaran Inkuiri Terbimbing terhadap Hasil Belajar Fisika Siswa (Kemampuan Representasi Verbal, Gambar, Matematis, dan Grafik) di SMA. Jurnal Pembelajaran Fisika, 5(1), 60–65




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v8i1.3801

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.