Electrospun Nylon-6 Nanofibers and Their Characteristics

https://doi.org/10.24042/jipfalbiruni.v9i1.5747

Ida Sriyanti, Meily P Agustini, Jaidan Jauhari, Sukemi Sukemi, Zainuddin Nawawi

Abstract


The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors


Keywords


Electrospinning; Morphology; Nanofiber

Full Text:

PDF

References


An, T., Pant, B., Yun, S., Park, M., Park, S., & Kim, H. (2017). Mechanical and optical properties of electrospun nylon-6, 6 nano fiber reinforced cyclic butylene terephthalate composites. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2017.06.044

Aruan, N. M., Sriyanti, I., Edikresnha, D., Suciati, T., Munir, M. M., & Khairurrijal, K. (2017). Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Engineering, 170, 31–35. https://doi.org/10.1016/j.proeng.2017.03.006

Bunaciu, A. A., Hoang, V. D., & Aboul-Enein, H. Y. (2015). Applications of FT-IR spectrophotometry in cancer diagnostics. Critical Reviews in Analytical Chemistry, 45(2), 156–165. https://doi.org/10.1080/10408347.2014.904733.

Clasen, C., Bico, J., Entov, V. M., & McKinley. (2009). Gobbling drops: the jetting-dripping transition inflows of polymer solutions. Journal of Fluid Mechanics, vol. 636, pp. 5–40, 2009. http://doi.org/10.1017/S0022112009008143

Dai, X. Y., Nie, W., Wang, Y. C., Shen, Y., Li, Y., & Gan, S. J. (2012). Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: A novel medicated biomaterial for drug delivery and accelerated wound healing. Journal of Materials Science: Materials in Medicine, 23(11), 2709–2716. https://doi.org/10.1007/s10856-012-4728-x

Edikresnha, D., Suciati, T., Munir, M.M., & Khairurrijal, K. (2019). Polyvinylpyrrolidone/ celluloseacetate electrospun composite nanofibres loaded by glycerine andgarlic extract with in vitro antibacterial activity andrelease behaviour test. RSC Advances (26351–26363). http://doi.org/10.1039/c9ra04072b

Gao, K., Shao, Z., Li, J., Wang, X., Peng, X., Wang, W., & Wang, F. (2013). Cellulose nanofiber-graphene all solid-state flexible supercapacitors. Journal of Materials Chemistry A, 1(1), 63–67. https://doi.org/10.1039/c2ta00386d

Pillay, V., Dott, C., Yahya, E., Choonara, Tyagi, C., Tomar, L., Kumar, P., Lisa, C., Toit, D., & Valence M. K. & Ndesendo (2013). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Journal of Nanomaterials. https://doi.org/10.1155/2013/789289.

Almetwally, A. A, El-Sakhawy, M., Elshakankery, M. H.., & Kasem, M. H. (2017) Technology of nano-fibers: Production techniques and properties - Critical review. Journal of the Textile Association. 78(1):5-14.

Ismar, E., Karazehir, T., Ates, M., & Sarac, A. S. (2018). Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes. Journal of Applied Polymer Science, 135(4), 1–10. https://doi.org/10.1002/app.45723

Jauhari, J., Wiranata, S., Rahma, A., Nawawi, Z & Sriyanti, I. (2019). Polyvinylpyrrolidone/cellulose acetate nanofibers synthesized using electrospinning method and their characteristics. Materials Research Express, 6(6), 064002. https://doi.org/10.1088/2053-1591/ab0b11

Kamaruddin, Sriyanti, I., Edikresnha, D., Munir, M. M., & Khairurrijal, K. (2018). Electrosprayed polyvinylpyrrolidone (PVP) submicron particles loaded by green tea extracts. In IOP Conference Series: Materials Science and Engineering (Vol. 367). https://doi.org/10.1088/1757-899X/367/1/012036

Kang, E., Kim, M., Oh, J. S., Park, D. W., & Shim, S. E. (2012). Electrospun BMIMPF 6/ nylon 6, 6 nanofiber chemiresistors as organic vapour sensors, 20(4), 372–378. https://doi.org/10.1007/s13233-012-0043-0

Kayaci, F., Ozgit-akgun, C., Donmez, I., Biyikli, N., & Uyar, T. (2012). Polymer − Inorganic Core − Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon − ZnO Core − Shell Nanofiber Mats and Their Photocatalytic Activity. ACS Appl Mater Interfaces. 4(11):6185-94. https:// doi:10.1021/am3017976

Mehran, M., & Mojtaba, N-E. (2011). HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. International Journal of Nanomedicine 2011:6 1651–1659. https://doi:10.2147/ijn.s21203

Matulevicius, J., Kliucininkas, L., Prasauskas, T., Buivydiene, D., & Martuzevicius, D. (2016). The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. Journal of Aerosol Science, 92, 27–37. https://doi.org/10.1016/j.jaerosci.2015.10.006

Matabola, K. P., & Moutloali, R.M. (2013). The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers- effect of sodium chloride. Journal of Material Science. 48:5475–5482. https://doi.org/s10853-013-7341-6

Opanasopit, P., Charernsriwilaiwat, N., & Rojanarata, T. (2011). Electrospinning of chitosan based nanofiber mats as carriers for extract from the fruit hull of mangosteen, International Journal of Pharmacy. 16;452(1-2) http://doi:10.1016/j.ijpharm.2013.05.012.

Parlay, Ş., Avc, A., & Pehlivan, E. (2019). Electrospinning of polymeric nanofiber ( nylon 6, 6 / graphene oxide ) for removal of Cr (VI): synthesis and adsorption studies, Journal of Analytical Science and Technology 10:13. https://doi.org/10.1186/s40543-019-0173-5.

Risdian, C., Nasir, M., Rahma, A., & Rachmawati, H. (2015). The influence of formula and process on physical properties and the release profile of PVA/BSA nanofibers formed by electrospinning technique. Journal of Nano Research, 31, 103–116. https://doi.org/10.4028/www.scientific.net/JNanoR.31.103

Samprasit, W., Akkaramongkolporn, P., Ngawhirunpat, T., Rojanarata, T., Kaomongkolgit, R., & Opanasopit, P. (2015). Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. International Journal of Pharmaceutics, 487(1–2), 213–222. https://doi.org/10.1016/j.ijpharm.2015.04.044

03.011

Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., & Hu, A. (2015). Electrospinning of nanofibers and their applications for energy devices.Journal of Nanomaterials. http://dx.doi.org/10.1155/2015/14071

Sriyanti, I., Edikresnha, D., Munir, M. M., Rachmawati, H., & Rahma.A. (2017). Electrospun polyvinylpyrrolidone (PVP) nanofiber mats loaded by garcinia mangostana l. extracts. Materials Science Forum (Vol. 880, pp. 11–14).

Sriyanti, I., Edikresnha, D., Rahma, A., Miftahul Munir, M., Rachmawati, H., & Khairurrijal, K. (2018). Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of α-mangostin. International Journal of Nanomedicine, Volume 13, 4927–4941. https://doi.org/10.2147/IJN.S167670

Sriyanti., I, Edikresnha., D., Rahma, A., Miftahul Munir, M., Rachmawati, H., & Khairurrijal, K. (2017). Correlation between Structures and antioxidant activities of polyvinylpyrrolidone/garcinia mangostana l. extract composite nanofiber mats prepared using electrospinning. Journal of Nanomaterials. https://doi.org/10.1155/2017/9687896

Suwantong, O., & Pankongadisak, P. (2014). Electrospun poly (L -lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings, PolymerBulletin 71, 925–949. https://doi.org/10.1007/s00289-014-1102-9

Vongsetskul, T., Chantarodsakun, T., Wongsomboon, P., Rangkupan, R., & Tangboriboonrat, P. (2015). Effect of solvent and processing parameters on electrospun polyvinylpyrrolidone ultrafine fibers. Chiang Mai Journal of Science, 42(2), 436–442.

Yu, Y., Ma R., Yana, S., & Fan, J. (2018). Membranes by electrospinning and hot pressing. RSC Advances, 8, 12173. https://doi.org/10.1039/C8RA01442F

Yuxi Y, Rui, M., Shaole, Y., and Jiyu, F. (2018). Preparation of multi-layer nylon-6 nanofibrous membranes by electrospinning and hot pressing methods for dye filtration: RSC Advances, 8, 12173. https://doi.org/10.1039/C8RA01442F




DOI: https://doi.org/10.24042/jipfalbiruni.v9i1.5747

Article Metrics

Abstract views : 187 | PDF downloads : 56

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal Ilmiah Pendidikan Fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Physics Education Department, UIN Raden Intan Lampung. All rights reservedp-ISSN 2303-1832 | e-ISSN 2503-023X