Developing heat rate and heat capacity measurement instruments of textile waste solution in the textile dyeing process

Valentinus Galih Vidia Putra, Endah Purnomosari, Juliany Ningsih Mohamad


Heat rate and heat capacity are widely used to determine the thermal characteristics, especially for wastewater treatment using electro coagulant. This study aimed to determine the value of heat rate and heat capacity of the waste solution in the textile industry, especially in the dyeing waste, by using a microcontroller device. The method for measuring the specific heat capacity and the textile waste solution's heat rate is based on the principle of the first law of Thermodynamics. Temperature measurements were carried out using a digital temperature sensor type DS18B20. In this research, the heat rate and specific heat of the dyeing solution and mineral water used in the textile industry have been studied. This study uses five types of dyeing waste solution as test solutions, namely green waste solution, orange waste solution, blue waste solution, brown waste solution, and mineral water. This experiment's principle is applying Joule's law by using electrical properties with a microcontroller device used to obtain the rise of temperature data each time in real-time every 2 seconds. Based on this research, it can be concluded that the instrument can be used to measure the heat rate and heat capacity of a textile waste solution. Based on this research, we also found that the specific heat of hard water (Hard water is a kind of water with high mineral content, while soft water is water with low mineral content. Apart from calcium and magnesium ions, the cause of hardness can also be other metal ions as well as bicarbonate and sulfate salts) (4.19 ± 0.77) J/ gram ℃ and the specific heat of the four types of waste solution ranged from (3.20 ± 0.72) J/gram ℃ to (6.83 ± 1.71) J/gram ℃ and also it was found that the heat rate of hard water is 0,0471 ℃/s and the heat rate of the four types of waste solution is range from 0,0289 ℃/s to 0,0617 ℃/s.


waste; spesific heat; textile

Full Text:



Abdelhady, S. (2009). Thermodynamic analysis of electric charges and magnetic flux. 11th International Conference on Energy and Environment, (pp. 175-185). Ghurgada.

Ackermann, T. (1957). Hydration of H+ and OH–ions in water from heat capacity measurements. Discussions of the Faraday Society, 24, 180-193,

Amril, H. (2020). Teknologi plasma untuk pengolahan air. Bandung: Institut Teknologi Bandung.

Anwar, H., Santoso, H., Khameswara, T. D., & Priantoro, A. U. (2017). Monitor-PoP — ISP's PoP room temperature and humidity web based monitoring using microcontroller. Control and System Graduate Research Colloquium (ICSGRC) (pp. 212–216.). IEEE.

Badamasi, Y. (2014). The working principle of an Arduino. International Conference on Electronics, computer and computation (pp. 1-4). Abuja, Nigeria: IEEE.

Bramawanto, R., Triwibowo, H., & Abida, R. F. (2019). Pemanfaatan teknologi mikrokontroler untuk pengukuran evaporasi suhu udara dan air pada produksi garam skala laboratorium. Jurnal Kelautan Nasional, 14(2), 155–164.

Biesheuvel, P. (2009). Thermodynamic cycle analysis for capacitive deionization. Journal of Colloid and Interface Science, 332(1), 258-264. .2008.12.018.

Boltshauser, T., Leme, C., & Baltes, H. (1993). High sensitivity CMOS humidity sensors with on-chip absolute capacitance measurement system. System Sensors and Actuators B: Chemical, 15(1-3), 75-80. 030-E.

Cengel, Y. A., & Boles, M. A. (2010). Thermodynamics: An engineering approach, 7th Edition. New York: McGraw-Hill.

Cengel, Y. A., & Boles, M. A. (2002). Thermodynamics: An engineering approach 4th Edition in SI Units. Singapore: McGraw-Hill.

Dean, R., & Rane, A. (2013). A digital frequency-locked loop system for capacitance measurement. IEEE Transactions on Instrumentation and Measurement, 62(4), 777-784.

Dean, T., Bell, J., & Baty, A. (1987). Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. Journal of Hydrology, 93(1-2), 67-78.

Desianna, I., Putri, C. A., & Yulianti, I. (2017). Selulosa kulit jagung sebagai adsorben logam cromium (Cr) pada limbah cair batik. Unnes Physics Journal, 6(1), 19–24.

Ditmars, D. (1988). Drop calorimetry above 300 K. London: Hemisphere Publishing Corporations.

Fadli, R. K., Riswanto, A. S., Aji, D., & Widiasih, W. (2018). Aplikasi elektrokoagulasi untuk pengolahan limbah batik. Jurnal Abdikarya : Jurnal Karya Pengabdian Dosen Dan Mahasiswa, 1(2), 158–162.

Giwaa, S., Polatb, K., & Hapoglua, H. (2012). The effects of operating parameters on temperature and electrode dissolution in electrocoagulation treatment of petrochemical. International Journal of Engineering Research and Technology (IJERT), 1(10), 2278.

Greiner, W., Neise, L., & Stocker, H. (1995). Thermodynamics and statistical mechanics. New York: Springer.

Grolier, J., Benson, G., & Picker, P. (1975). Simultaneous measurements of heat capacities and densities of organic liquid mixtures. Systems containing ketones. Journal of Chemical and Engineering Data, 20(3), 243-246.

Halliday, D., Resnick, R., & Walker. (1997). Fundamenthal of Physics-Extended, 5th. New York: John Wiley& Sons.

Hariyanto, M. W., Hendrawan, A. H., & Ritzkal. (2020). Monitoring the environmental temperature. Journal of Robotics and Control (JRC), 1(3), 96-101, DOI: 10.18196/jrc.1321.

Hashim, K., Shaw, A., Khaddar, R. A., Pedrola, M. O., & Phipps, D. (2017). Influence of electrodes spacing on internal temperature of electrocoagulation (EC) cells during the removal (Fe II) from drinking water. International Conference for Doctoral Research. Dubai: LJMU Research .

Hoffmann, T., Eilebrecht, B., & Leonhardt, S. (2010). Respiratory monitoring system on the basis of capacitive textile force sensors. IEEE sensors journal, 11(5), 1112-1119. JSEN.2010.2082524.

Kodalkar, V., Ryu, G., Lee, Y., & Lee, K. (2019). Development of highly sensitive and stable humidity sensor for real-time monitoring of dissolved moisture in transformer-insulating oil. Sensor and Actuators B: Chemical, 286(1), 377-385.

Mouedhen, G., feki, M., Wery, M., & Ayedi, H. (2008). Behavior of aluminum electrodes in electrocoagulation process. journal of Hazardous Materials, 150(1), 124-135.

Picker, P., Ledue, P., Philip, P., & Desnoyers, J. (1971). Heat capacity of solutions by flow microcalorimetry. The Journal of Chemical Thermodynamics, 3(5), 631.

Pogatscher, S., Leutenegger, D., Schawe, J. E., Uggowitzer, P. J., & Löffler, J. F. (2016). Solid–solid phase transitions via melting in metals. Nature Communication , doi:10.1038/ncomms11113. ISSN 2041-1723. PMC 4844691.

Putra, V. G., Mohamad, J. N., & Yusuf, Y. (2020). Penerapan gelombang plasma dalam mengurangi kadar chemical oxygen demand (COD) pada limbah batik melalui corona plasma dan elektrokoagulasi dengan metode variasi. Jurnal Ilmu Fisika (JIF), 11(2), 60-69.

Putra, V. (2017). Pengantar fisika dasar. Yogyakarta: CV. Mulia Jaya Publisher.

Putra, V., & Purnomosari, E. (2015). Pengantar eksperimen fisika. yogyakarta: CV. Mulia Jaya, ISBN 978.602.72713.0.2.

Putra, V., & Wijayono, A. (2019). Suatu studi awal modifikasi sifat pembasahan pada permukaan kain tekstil poliester 100% menggunakan teknologi plasma pijar korona. E-Journal Prosiding Seminar Nasional Fisika ,

Putra, V., Ngadiyono, N., & Purnomosari, E. (2019). Pengantar praktikum mekatronika tekstil. Yogyakarta: CV. Mulia Jaya Publisher.

Putra, V., Purnomosari, E., & Ngadiyono, N. (2016). Pengantar listrik magnet dan terapannya. Yogyakarta: CV. Mulia Jaya, ISBN 978-60272713-2-6-1.

Putra, V., Wijayono, A., Purnomosari, E., & Irwan. (2019). Studi penentuan kalor jenis air dan larutan garam menggunakan mikrokontroler arduino uno. JIPFRI (Jurnal Inovasi pendidikan Fisika dan Riset Ilmiah) , 3(2), 86.

Putra, V. G. V., Fitri, A. D., Purnama, I., & Mohamad, J. N. (2020). Prototipe pakaian anti radiasi unisex sportswear smartphone dengan paparan radiasi plasma pijar korona elektroda tip- silinder. Jurnal Kumparan Fisika, 3(1), 19–24.

Quick, C. R., Schawe, J. E., Uggowitzer, P. J., & Pogatscher, S. (2019). "Measurement of specific heat capacity via fast scanning calorimetry—Accuracy and loss corrections". Thermochimica Acta , 677, 12-20.

Rahardjo, D., Utami, W. B., Saputro, D., & Jamaluddin, A. (2018). Design of calorimeters based on arduino mega. International Conference on Science and Applied Science (ICSAS) 2018 (pp. 1-6). AIP Conference Proceedings.

Raine, H., Richards, R., & Ryder, H. (1945). The heat capacity, heat of solution, and crystallinity of polythene. Transactions of the faraday Society , 41, 56-64.

Rerkratn, A., & Kaewpoonsuk, A. (2015). ZigBee based wireless temperature monitoring system for shrimp farm. International Conference on Control, Automation and Systems (pp. 428-431). IEEE.

Ridantami, V., Wasito, B., & Prayitno. (2016). Pengaruh tegangan dan waktu pada pengolahan limbah radioaktif uranium dan torium dengan proses elektrokoagulasi. Jurnal Forum Nuklir (JFN), 10(2), 102–107.

Rusydi, A. F., Suherman, D., & Sumawijaya, N. (2017). Pengolahan air limbah tekstil melalui proses koagulasi – flokulasi dengan menggunakan lempung sebagai penyumbang partikel tersuspensi. Arena Tekstil, 31(2).

S.Pogatscher, D. L. (2014). Characterization of bulk metallic glasses via fast differential scanning calorimetry. Thermochim. Acta , 590(20), 84-90.

Said, N. I. (2002). Pengolahan air limbah industri kecil tekstil dengan proses biofilter anaerob-aerob tercelup menggunakan media plastik sarang tawon. Jurnal Teknologi Lingkungan, 2(2), 124–135.

Salvo, P., Francesko, F., Costanzo, D., ferrari, C., Trivella, M., & Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557-1558.

Sathian, S., Rajasimman, M., Rathnasabapathy, C., & Karthikeyan, C. (2014). Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption. Journal of Water Process Engineering, 4, 82-90.

Schick, C., & Mathot, V. (2016). Fast scanning calorimetry. London: Springer. 10.1007/978-3-319-31329-0.

Simoes-Moreira, J. (2010). An air-standard cycle and a thermodynamic perspective on operational limits of Ranque–Hilsh or vortex tubes. International Journal of refrigerator, 33(4), 765-773.

Sreejith, K., Shyamkumar, P., Appu, R., & Sreedevi, C. (2015). A low cost automated specified heat capacity meter for liquids. International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15 (pp. 1-4). IEEE.

Suherman, Andriyanto, I., & Dwiyatno, S. (2015). Rancang bangun alat ukur temperatur suhu perangkat server menggunakan sensor LM35 berbasis SMS Gateway. Jurnal Prosisko, 2(1), 42–63.

Teruel, J. G., Sanchez, R. T., Ros, P. B., Moreo, A. T., Buendia, M. M., & Valles, F. S. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19(3), 491.

Thomas, D., Zhuravlev, E., Wurm, A., Schick, C., & Cebe, P. (2018). Fundamental thermal properties of polyvinyl alcohol by fast scanning calorimetry. Polymer, 1, 145-155.

Tirono, M., & Sabit, A. (2012). Efek suhu pada proses pengarangan terhadap nilai kalor arang tempurung kelapa (coconut shell charcoal). Journal Neutrino: Jurnal Fisika dan Aplikasinya, 3(2).

Ulesova, A., Grechko, A., & Sadova, S. (2008). Continuous dyeing of wool fabric containing polyamide fibre and modified by plasma glow discharge. Fibre Chemistry, 40, 143-146.

Wakida, T., Cho, S., Choi, S., Tokino, S., & Lee, M. (1998). Effect of low temperature plasma treatment on color of wool and nylon 6 fabrics dyed with natural dyes. Textile Research Journal, 68(16), 848-853.

Wakida, T., Tokino, S., Niu, S., Lee, M., Uchiyama, H., & Kaneko, M. (1993). Dyeing properties of wool treated with low-temperature plasma under atmospheric pressure. Textile Research Journal, 438-442.

Yilmaz, A., Boncukcuoglu, R., Kocakerim, M., Yilmaz, M., & Paluluoglu, C. (2008). Boron removal from geothermal waters by electrocoagulation. Journal of Hazardous Materials, 153(1-2), 146-151.

Yumang, A. N., Paglinawan, C. C., Sejera, M. M., Lazam, A. S., Pagtakhan, J., & Santos, J. S. (2016). ZigBee based monitoring of temperature and humidity of server rooms using thermal imaging. 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (pp. 452-454). IEEE.

Zhuravlev, E., & Schick, C. (2010). Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta, 505(1-2), 1-13.



  • There are currently no refbacks.

Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.