Estimation of crystallite size, density, and compositional of the Ti: Al2O3 single crystal

Hamdan Hadi Kusuma, Zuhairi Ibrahim, Zulkafli Othaman

Abstract


The purposes of this research were to estimate the crystallite size, density, and chemical composition of the ingot Ti: Al2O3  crystal grown by the Czochralski method. The crystallite size and composition of Ti: Al2O3 crystals had been determined using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDXS). Based on the Archimedes principle, the density of the crystals had been determined. The XRD patterns showed a single central peak with high intensity for all samples. It indicated that all samples had a single crystal. The average value of the samples' crystallite size was in the range of 20.798 nm to 34.294 nm. The ingot crystal density and Ti composition increased from the top to the bottom part because the solid solution was distributed unevenly during the growth process.

Keywords


Crrystallite size; Czochralski method; Density; Ti:sapphire

Full Text:

PDF

References


Alombert-Goget, G., Lebbou, K., Barthalay, N., Legal, H., & Chériaux, G. (2014). Large Ti-doped sapphire bulk crystal for high power laser applications. Optical Materials, 36(12), 2004–2006. https://doi.org/10.1016/j.optmat.2014.01.011

Alombert-Goget, G., Li, H., Faria, J., Labor, S., Guignier, D., & Lebbou, K. (2016). Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique. Optical Materials, 51(1), 1–4. https://doi.org/10.1016/j.optmat.2015.11.016

Chen, C.-H., Chen, J.-C., Chiue, Y.-S., Chang, C.-H., Liu, C.-M., & Chen, C.-Y. (2014). Thermal and stress distributions in larger sapphire crystals during the cooling process in a Kyropoulos furnace. Journal of Crystal Growth, 385(1), 55–60. https://doi.org/10.1016/j.jcrysgro.2013.04.060

Chen, C., Chen, H. J., Yan, W. B., Min, C. H., Yu, H. Q., Wang, Y. M., Cheng, P., & Liu, C. C. (2014). Effect of crucible shape on heat transport and melt–crystal interface during the Kyropoulos sapphire crystal growth. Journal of Crystal Growth, 388(1), 29–34. https://doi.org/10.1016/j.jcrysgro.2013.11.002

Chen, C. H., Chen, J. C., Lu, C. W., & Liu, C. M. (2012). Effect of power arrangement on the crystal shape during the kyropoulos sapphire crystal growth process. Journal of Crystal Growth, 352(1), 9–15. https://doi.org/10.1016/j.jcrysgro.2012.01.017

Dong, J., & Deng, P. (2004). Ti: sapphire crystal used in ultrafast lasers and amplifiers. Journal of Crystal Growth, 261(4), 514–519. https://doi.org/10.1016/j.jcrysgro.2003.09.049

Fielitz, P., Borchardt, G., Ganschow, S., Bertram, R., & Markwitz, A. (2008). 26Al tracer diffusion in titanium doped single crystalline α-Al2O3. Solid State Ionics, 179(11–12), 373–379. https://doi.org/10.1016/j.ssi.2008.03.007

Gao, Y., Guo, X., & Lu, J. (2015). Analysis of cracking at the bottom during the last stage of kyropoulos sapphire crystal growth【Al2O3】. International Journal of Science, 2(8), 146–153.

Ghezal, E. A., Nehari, A., Lebbou, K., & Duffar, T. (2012). Observation of gas bubble incorporation during micro pulling-down growth of sapphire. Crystal Growth and Design, 12(11), 5715–5719. https://doi.org/10.1021/cg301232r

Han, X., Feng, X., Li, W., & Guo, S. (2020). One kind of new Ti3+ luminous center in Ti: Al2O3 crystals. Optical Materials, 105(1), 109881. https://doi.org/10.1016/j.optmat.2020.109881

Hur, M.-J., Han, X.-F., Choi, H.-G., & Yi, K.-W. (2017). Crystal front shape control by use of an additional heater in a czochralski sapphire single crystal growth system. Journal of Crystal Growth, 474(1), 24–30. https://doi.org/10.1016/j.jcrysgro.2016.12.078

Jainal, M. N., Ibrahim, Z., & Kusuma, H. H. (2010). Influence of control power on the diameter of Ti: Al2O3 Single Crystal. Proceedings of 3rd International Conference on Solid State Science & Technology.

Joyce, D. B., & Schmid, F. (2010). Progress in the growth of large scale Ti : sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. Journal of Crystal Growth, 312(8), 1138–1141. https://doi.org/10.1016/j.jcrysgro.2009.11.002

Kamada, K., Murakami, R., Kochurikhin, V. V., Luidmila, G., Jin Kim, K., Shoji, Y., Yamaji, A., Kurosawa, S., Ohashi, Y., Yokota, Y., & Yoshikawa, A. (2018). Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method. Journal of Crystal Growth, 492(1), 45–49. https://doi.org/10.1016/j.jcrysgro.2018.03.023

Kamaruddin, W. H. A., Kusuma, H. H., & Ibrahim, Z. (2013). Effect of new thermal insulation to the growth of LiNbO3 single crystal by czochralski method. Advanced Materials Research, 701, 108–112. https://doi.org/10.4028/www.scientific.net/AMR.701.108

Kozlov, S. A., & Samartsev, V. V. (2013). Femtosecond lasers and laser systems. In Fundamentals of Femtosecond Optics (pp. 94–243). Elsevier. https://doi.org/10.1533/9781782421290.94

Kusuma, H. H. (2015). X-Ray diffraction and density distribution measurements on the Al2O3 crystals grown by czochralski method with different pull rate. Journal of Natural Sciences and Mathematics Research, 1(1), 1–4. https://doi.org/10.21580/jnsmr.2015.1.1.475

Kusuma, H. H., Ibrahim, Z., & Othaman, Z. (2018). The density and compositional analysis of titanium doped sapphire single crystal is grown by the Czocharlski method. Journal of Physics: Conference Series, 983(1), 1–7. https://doi.org/10.1088/1742-6596/983/1/012018

Li, H., Ghezal, E. A., Alombert-Goget, G., Breton, G., Ingargiola, J. M., Brenier, A., & Lebbou, K. (2014). Qualitative and quantitative bubbles defects analysis in undoped and Ti-doped sapphire crystals grown by Czochralski technique. Optical Materials, 37(1), 132–138. https://doi.org/10.1016/j.optmat.2014.05.012

Li, H., Ghezal, E. A., Nehari, A., Alombert-Goget, G., Brenier, A., & Lebbou, K. (2013). Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique. Optical Materials, 35(5), 1071–1076. https://doi.org/10.1016/j.optmat.2012.12.022

Moulton, P. F., Cederberg, J. G., Stevens, K. T., Foundos, G., Koselja, M., & Preclikova, J. (2019). Characterization of absorption bands in Ti: sapphire crystals. Optical Materials Express, 9(5), 2216–2251. https://doi.org/10.1364/ome.9.002216

Nehari, A., Brenier, A., Panzer, G., Lebbou, K., Godfroy, J., Labor, S., Legal, H., Chériaux, G., Chambaret, J. P., Duffar, T., & Moncorgé, R. (2011). Ti-doped sapphire (Al2O3) single crystals grown by the kyropoulos technique and optical characterizations. Crystal Growth and Design, 11(2), 445–448. https://doi.org/10.1021/cg101190q

Panahi, O., Nazeri, M., & Tavassoli, S. H. (2015). Design and construction of a tunable pulsed Ti: sapphire laser. Journal of Theoretical and Applied Physics, 9(2), 99–103. https://doi.org/10.1007/s40094-015-0164-x

Raeder, S., Ferrer, R., Granados, C., Huyse, M., Kron, T., Kudryavtsev, Y., Lecesne, N., Piot, J., Romans, J., Savajols, H., Van Duppen, P., & Wendt, K. D. A. (2020). Performance of Dye and Ti: sapphire laser systems for laser ionization and spectroscopy studies at S3. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 463, 86–95. https://doi.org/10.1016/j.nimb.2019.11.024

Ren, Y., Jiao, Y., Vázquez de Aldana, J. R., & Chen, F. (2016). Ti: Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties. Optical Materials, 58, 61–66. https://doi.org/10.1016/j.optmat.2016.05.023

Sawada, R., Tanaka, H., Sugiyama, N., & Kannari, F. (2017). Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti: sapphire laser. Applied Optics, 56(6), 1654–1661. https://doi.org/10.1364/AO.56.001654

Sen, G., Alombert Goget, G., Nagirnyi, V., Romet, I., Tran Caliste, T. N., Baruchel, J., Muzy, J., Giroud, L., Lebbou, K., & Duffar, T. (2020). Origin of scattering defect observed in large diameter Ti: Al2O3 crystals grown by the Kyropoulos technique. Journal of Crystal Growth, 535(1), 125530. https://doi.org/10.1016/j.jcrysgro.2020.125530

Song, C., Hang, Y., Xia, C., Zhang, C., Xu, J., & Zhou, W. (2005). Growth of composite sapphire/Ti: sapphire by the hydrothermal method. Journal of Crystal Growth, 277(1–4), 200–204. https://doi.org/10.1016/j.jcrysgro.2004.12.135

Spassky, D. A., Kozlova, N. S., Brik, M. G., Nagirnyi, V., Omelkov, S., Buzanov, O. A., Buryi, M., Laguta, V., Shlegel, V. N., & Ivannikova, N. V. (2017). Luminescent, optical, and electronic properties of Na2Mo2O7 single crystals. Journal of Luminescence, 192, 1264–1272. https://doi.org/10.1016/j.jlumin.2017.09.006

Stelian, C., Sen, G., Barthalay, N., & Duffar, T. (2016). Comparison between numerical modeling and experimental measurements of the interface shape in Kyropoulos growth of Ti-doped sapphire crystals. Journal of Crystal Growth, 453, 90–98. https://doi.org/10.1016/j.jcrysgro.2016.08.001

Stelian, Carmen, Alombert-Goget, G., Sen, G., Barthalay, N., Lebbou, K., & Duffar, T. (2017). Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method. Optical Materials, 69, 73–80. https://doi.org/10.1016/j.optmat.2017.04.020

Wang, B., Bliss, D. F., & Callahan, M. J. (2009). Hydrothermal growth of Ti: sapphire (Ti3+: Al2O3) laser crystals. Journal of Crystal Growth, 311(3), 443–447. https://doi.org/10.1016/j.jcrysgro.2008.09.052

Wu, F., Zhang, Z., Yang, X., Hu, J., Ji, P., Gui, J., Wang, C., Chen, J., Peng, Y., Liu, X., Liu, Y., Lu, X., Xu, Y., Leng, Y., Li, R., & Xu, Z. (2020). Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator. Optics and Laser Technology, 131(June), 1–8. https://doi.org/10.1016/j.optlastec.2020.106453

Zhang, L., Gonçalves, A. A. S., & Jaroniec, M. (2020). Identification of preferentially exposed crystal facets by X-ray diffraction. RSC Advances, 10(10), 5585–5589. https://doi.org/10.1039/D0RA00769B

Zhou, D., Xia, C., Guyot, Y., Zhong, J., Xu, X., Feng, S., Lu, W., Song, J., & Lebbou, K. (2015). Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers. Optical Materials, 47, 495–500. https://doi.org/10.1016/j.optmat.2015.06.027

Zhou, G., Dong, Y., Xu, J., Li, H., Si, J., Qian, X., & Li, X. (2006). Φ140 mm sapphire crystal growth by temperature gradient techniques and its color centers. Materials Letters, 60(7), 901–904. https://doi.org/10.1016/j.matlet.2005.10.092

Zong, Q.-S., Bian, Q., Xu, C., Chang, J.-Q., He, L.-J., Bo, Y., Zuo, J.-W., Xu, Y.-T., Cui, D.-F., Peng, Q.-J., & Xu, Z.-Y. (2019). High beam quality narrow linewidth microsecond pulse Ti: sapphire laser operating at 819.710 nm. Optics & Laser Technology, 113(November 2018), 52–56. https://doi.org/10.1016/j.optlastec.2018.11.019




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v9i2.7207

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.