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One of the phenomenon in marine science that is often encountered is the 

phenomenon of water waves. Waves that occur below the surface of 

seawater are called internal waves. One of the mathematical models that 

can represent solitary internal waves is the modified Korteweg-de Vries 

(mKdV) equation. Many methods can be used to construct the solution of 

the mKdV wave equation, one of which is the extended F-expansion 

method. The purpose of this study is to determine the solution of the mKdV 

wave equation using the extended F-expansion method. The result of 

solving the mKdV wave equation is the exact solutions. The exact 

solutions of the mKdV wave equation are expressed in the Jacobi elliptic 

functions, trigonometric functions, and hyperbolic functions. From this 

research, it is expected to be able to add insight and knowledge about the 

implementation of the innovative methods for solving wave equations. 

 

INTRODUCTION 

One of the phenomenon in marine science that is often encountered is the phenomenon of water 

waves. There are water waves that occur at the sea level and some that occur below the surface 

of seawater. Waves that occur below the surface of seawater are called internal waves. One of 

the internal waves that are often observed is a solitary wave that has only one peak and 

propagates by maintaining its shape and speed and there is no backflow (Munk, 1949). This 

solitary wave motion can be modeled in a mathematical equation to obtain a model approach 

related to the shape and propagation process towards the coast. 

One of the mathematical models that can represent solitary internal waves is the 

Korteweg-de Vries (KdV) equation. This KdV equation is derived from the basic equation of 

the ideal fluid, which is incompressible and inviscid. The KdV equation is modified so that the 

modified Korteweg-de Vries (mKdV) equation is obtained. The mKdV wave equation can be 

solved using analytic (exact) and numerical (approach) methods. 

Many methods have been used by researchers to construct the solution of the mKdV wave 

equation. Some of them are the F-expansion method (Bashir & Alhakim, 2013), the exp-

function method (Chai et al., 2014), the (G’/G)-expansion method (Islam et al., 2015), the 

inverse scattering transform (Ji & Zhu, 2017), conformable fractional derivative (Nuruddeen, 

2018), and the local fractional derivative (Gao et al., 2019) with results in the form of exact 

solutions. In addition, there are also researchers who use numerical methods such as the 

Adomian Pade approximation method (Abassy et al., 2004), the numerical inverse scattering 

(Trogdon et al., 2012), differential quadrature method (Başhan et al., 2016), and a lumped 

Galerkin method based on cubic B-spline interpolation functions (Ak et al., 2017). 
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The extended F-expansion method is the development of the F-expansion method by 

providing additional variables to the solution. This method can be used to solve the problem of 

nonlinear differential equations in a simple way and produces an exact solutions. This method 

has been used to solve the modified KdV-KP equation (Al-Fhaid, 2012), the Kudryashov-

Sinelshchikov equation (Zhao, 2013), a higher-order wave equation of KdV type (He et al., 

2013), the Fourth Order Boussinesq equation (Apriliani, 2015), the Drinfel’d-Sokolov-Wilson 

(DSW) equation and the Burgers equation (Akbar & Ali, 2017), the Benney-Luke equation and 

the Phi-4 equation (Islam, Khan, et al., 2017), the MEE circular rod equation and the ZKBBM 

equation (Islam, Akbar, et al., 2017), nonlinear Klein-Gordon equation (Islam et al., 2018), and 

the space-time fractional cubic Schrodinger equation (Pandir & Duzgun, 2019). 

From the description above, the research related to solving the wave equation is very 

important to be studied at this time. When the exact solution exists, it can help to understand 

the dynamic process of the wave equation being modeled. Previous research has not examined 

the method of extended F-expansion to determine the exact solution of the mKdV wave 

equation. Therefore, we are interested to study the exact solution of the mKdV wave equation 

using the extended F-expansion method. 

 

METHODS 

The data used in this study are secondary data in the form of the modified Korteweg-de Vries 

(mKdV) equation. The method used is the extended F-expansion method with the main 

procedure as follows (He et al., 2013): 

Step 1 

Consider a general nonlinear partial differential equations 

𝐹(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑥𝑡 , … ) = 0. (1) 

Using 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, equation (1) can be written as a nonlinear ordinary 

differential equation 

𝐹(𝑈, 𝑈′, 𝑈′′, … ) = 0, (2) 

Step 2 

Suppose the solution of equation (2) can be written as follows: 

𝑈(𝜉) = 𝐴0 + ∑ (𝐴𝑖𝐹𝑖(𝜉) + 𝐵𝑖𝐹
−𝑖(𝜉))

𝑛

𝑖=1

, (3) 

where 𝐴𝑖 , 𝐵𝑖 (𝑖 = 1,2, … 𝑛) are constants to be determined, 𝑛 is a positive integer derived from 

the homogeneous balance principle, and 𝐹(𝜉) satisfies the following equation: 
 

(𝐹′(𝜉))
2

= ℎ0 + ℎ1𝐹(𝜉) + ℎ2𝐹2(𝜉) + ℎ3𝐹3(𝜉) + ℎ4𝐹4(𝜉), (4) 
 

where ℎ0, ℎ1, ℎ2, ℎ3, and ℎ4 are constants. 
 

Next, the both sides of equation (4) are differentiated to 𝜉 once yield 
 

𝐹′′(𝜉) =
1

2
ℎ1 + ℎ2𝐹(𝜉) +

3

2
ℎ3𝐹2(𝜉) + 2ℎ4𝐹3(𝜉). (5) 
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Step 3 

Substituting equations (3), (4), and (5) into equation (2) and setting all the coefficients of 

𝐹𝑗(𝜉) (𝑗 = 0,1,2, … ) of the resulting equation to zero yield a set of nonlinear algebraic equation 

systems for 𝐴0, 𝐴𝑖 , and 𝐵𝑖 (𝑖 = 1,2, … , 𝑛). 

Step 4 

Assuming that the constants 𝐴0, 𝐴𝑖 , and 𝐵𝑖 (𝑖 = 1,2, … , 𝑛) can be obtained by solving the 

algebraic equation systems in step 3 then substituting these constants into equation (3) so that 

the explicit solutions of equation (1) are obtained which depends on the special conditions 

chosen for the ℎ0, ℎ1, ℎ2, ℎ3, and ℎ4. 

 

RESULTS AND DISCUSSION 

In this section, the extended F-expansion method is used to determine the exact solution of the 

mKdV equation (Chai et al., 2014): 
 

𝑢𝑡 + 𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (6) 

 

Equation (6) is a nonlinear partial differential equation. Based on step 1 of the extended F-

expansion method, equation (6) is transformed into a nonlinear ordinary differential equation. 

The transformations used are 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑐𝑡 so that we obtain 
 

−𝑐𝑈′ + 𝑈2𝑈′ + 𝑈′′′ = 0. (7) 
 

Integrating equation (7) once and setting all the integral constants as zero (𝑘1 = 𝑘2 = 0) so that 

equation (6) has become a nonlinear ordinary differential equation 

 

−3𝑐𝑈 + 𝑈3 + 3𝑈′′ = 0. (8) 
 

From balancing 𝑈3 and 𝑈′′ in equation (8), we obtain 𝑛 = 1. Based on step 2 of the extended 

F-expansion method, the solution of equation (8) has the following form 
 

𝑢(𝑥, 𝑡) = 𝑈(𝜉) = 𝐴0 + 𝐴1𝐹(𝜉) +
𝐵1

𝐹(𝜉)
 (9) 

 

where 𝐴0, 𝐴1, and 𝐵1 are constants to be determined and 𝐹(𝜉) satisfies equations (4) and (5). 

Based on step 3 of the extended F-expansion method, equations (9), (4), and (5) are substituted 

into equation (8) yields 
 

        𝐴0
3 + 6𝐴0𝐴1𝐵1 − 3𝑐𝐴0 +

3𝐴1ℎ1

2
+

3𝐵1ℎ3

2
+

𝐵1
3+6𝐵1ℎ0

𝐹3(𝜉)
+

3𝐴0𝐵1
2+

9

2
𝐵1ℎ1

𝐹2(𝜉)
 

        +
3𝐴0

2𝐵1+3𝐴1𝐵1
2−3𝑐𝐵1+3𝐵1ℎ2

𝐹(𝜉)
+ [3𝐴0

2𝐴1 + 3𝐴1
2𝐵1 − 3𝑐𝐴1 + 3𝐴1ℎ2]𝐹(𝜉) 

        + [3𝐴0𝐴1
2 +

9

2
𝐴1ℎ3] 𝐹2(𝜉) + [𝐴1

3 + 6𝐴1ℎ4]𝐹3(𝜉) = 0. 

(10) 

 

All the coefficients of 𝐹𝑗(𝜉) (𝑗 =  −3, −2, … ,2,3) in equation (10) are set to zero so we obtain 

the following system of nonlinear algebraic equations: 

 

𝐹−3 ∶ 𝐵1
3 + 6𝐵1ℎ0 = 0, 

(11) 𝐹−2 ∶ 3𝐴0𝐵1
2 +

9

2
𝐵1ℎ1 = 0, 

𝐹−1 ∶ 3𝐴0
2𝐵1 + 3𝐴1𝐵1

2 − 3𝑐𝐵1 + 3𝐵1ℎ2 = 0, 
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𝐹0   ∶ 𝐴0
3 + 6𝐴0𝐴1𝐵1 − 3𝑐𝐴0 +

3𝐴1ℎ1

2
+

3𝐵1ℎ3

2
= 0, 

𝐹    ∶ 3𝐴0
2𝐴1 + 3𝐴1

2𝐵1 − 3𝑐𝐴1 + 3𝐴1ℎ2 = 0, 

𝐹2   ∶ 3𝐴0𝐴1
2 +

9

2
𝐴1ℎ3 = 0, 

𝐹3   ∶ 𝐴1
3 + 6𝐴1ℎ4 = 0. 

 

Based on step 4 of the extended F-expansion method, equation (11) is solved using Maple 

software with the assumption ℎ1 = ℎ3 = 0. The results are obtained in Table 1. 

 

Table 1. The Values of 𝐴0, 𝐴1, 𝐵1, 𝑐 as the Solution of Equation (11) 
Case 𝐴0 𝐴1 𝐵1 𝑐 

1 0 √−6ℎ4 0 ℎ2 

2 0 −√−6ℎ4 0 ℎ2 

3 0 0 √−6ℎ0 ℎ2 

4 0 0 −√−6ℎ0 ℎ2 

5 0 √−6ℎ4 √−6ℎ0 ℎ2 − 6√ℎ0ℎ4 

6 0 √−6ℎ4 −√−6ℎ0 ℎ2 + 6√ℎ0ℎ4 

7 0 −√−6ℎ4 √−6ℎ0 ℎ2 + 6√ℎ0ℎ4 

8 0 −√−6ℎ4 −√−6ℎ0 ℎ2 − 6√ℎ0ℎ4 

 

The values of 𝐴0, 𝐴1, 𝐵1, and 𝑐 in Table 1 are substituted to equation (9) respectively so that the 

general solutions of equation (8) are obtained as shown in Table 2. 
 

Table 2. General Solutions of Equation (8) 
Case General Solutions of Equation (8) 

1 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6ℎ4 𝐹(𝜉) with 𝜉 = 𝑥 − ℎ2𝑡 

2 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6ℎ4 𝐹(𝜉) with 𝜉 = 𝑥 − ℎ2𝑡 

3 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 − ℎ2𝑡 

4 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
−√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 − ℎ2𝑡 

5 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6ℎ4 𝐹(𝜉) +
√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 − (ℎ2 − 6√ℎ0ℎ4)𝑡 

6 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6ℎ4 𝐹(𝜉) −
√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 + (ℎ2 − 6√ℎ0ℎ4)𝑡 

7 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6ℎ4 𝐹(𝜉) +
√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 + (ℎ2 − 6√ℎ0ℎ4)𝑡 

8 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6ℎ4 𝐹(𝜉) −
√−6ℎ0

𝐹(𝜉)
 with 𝜉 = 𝑥 − (ℎ2 − 6√ℎ0ℎ4)𝑡 

 

Assuming that ℎ1 = ℎ3 = 0, then equation (4) becomes 
 

(𝐹′(𝜉))
2

= ℎ0 + ℎ2𝐹2(𝜉) + ℎ4𝐹4(𝜉). (12) 
 

The solutions of equation (12) are given in Table 3. Many exact solutions of equation (6) can 

be obtained by substituting the values of ℎ0, ℎ2, ℎ4 and the function 𝐹(𝜉) in Table 3 to the 

general solutions in Table 2. 
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Table 3. Relations between the Coefficients (ℎ0, ℎ2, ℎ4) and 𝐹(𝜉) in Equation (12) 

Case ℎ0 ℎ2 ℎ4 𝐹(𝜉) 

1 1 −(1 + 𝑚2) 𝑚2 sn𝜉 

2 1 −(1 + 𝑚2) 𝑚2 cd𝜉 

3 1 − 𝑚2 2𝑚2 − 1 −𝑚2 cn𝜉 

4 𝑚2 − 1 2 − 𝑚2 −1 dn𝜉 

5 𝑚2 −(1 + 𝑚2) 1 ns𝜉 

6 𝑚2 −(1 + 𝑚2) 1 dc𝜉 

7 −𝑚2 2𝑚2 − 1 1 − 𝑚2 nc𝜉 

8 −1 2 − 𝑚2 𝑚2 − 1 nd𝜉 

9 1 2 − 𝑚2 1 − 𝑚2 sc𝜉 

10 1 2𝑚2 − 1 −𝑚2(1 − 𝑚2) sd𝜉 

11 1 − 𝑚2 2 − 𝑚2 1 cs𝜉 

12 −𝑚2(1 − 𝑚2) 2𝑚2 − 1 1 ds𝜉 

 

Table 4. Jacobi Elliptic Functions Degenerate into Hyperbolic Functions when 𝑚 → 1 

sn(𝜉) → tanh(𝜉) cn(𝜉) → sech(𝜉) dn(𝜉) → sech(𝜉) sc(𝜉) → sinh(𝜉) 

sd(𝜉) → sinh(𝜉) cd(𝜉) → 1 ns(𝜉) → coth(𝜉) nc(𝜉) → cosh(𝜉) 

nd(𝜉) → cosh(𝜉) cs(𝜉) → csch(𝜉) ds(𝜉) → csch(𝜉) dc(𝜉) → 1 

 

Table 5. Jacobi Elliptic Functions Degenerate into Trigonometric Functions when 𝑚 → 0 

sn(𝜉) → sin(𝜉) cn(𝜉) → cos(𝜉) dn(𝜉) → 1 sc(𝜉) → tan(𝜉) 

sd(𝜉) → sin(𝜉) cd(𝜉) → cos(𝜉) ns(𝜉) → csc(𝜉) nc(𝜉) → sec(𝜉) 

nd(𝜉) → 1 cs(𝜉) → cot(𝜉) ds(𝜉) → csc(𝜉) dc(𝜉) → sec(𝜉) 
 

Each case in Table 3 is substituted to the general solutions in Table 2 so we obtain the 

exact solutions of the mKdV equation, which is equation (6) in the form of Jacobi elliptic 

functions. In addition, the Jacobi elliptic functions can degenerate when 𝑚 → 1 become 

hyperbolic functions using Table 4 and degenerate when 𝑚 → 0 become trigonometric 

functions using Table 5. 

The exact solutions of the mKdV equation in the form of Jacobi elliptic functions, 

hyperbolic functions, and trigonometric functions for Table 3 case 1 are obtained in the Table 

6, Table 7, and Table 8. 
 

Table 6. Exact Solutions of Equation (6) in Jacobi Elliptic Functions for Table 3 Case 1 
Case Exact Solutions in Jacobi Elliptic Functions 

1 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6𝑚2 sn𝜉 with 𝜉 = 𝑥 + (1 + 𝑚2)𝑡 

2 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6𝑚2 sn𝜉 with 𝜉 = 𝑥 + (1 + 𝑚2)𝑡 

3 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
√−6

sn𝜉
 with 𝜉 = 𝑥 + (1 + 𝑚2)𝑡 

4 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
−√−6

sn𝜉
 with 𝜉 = 𝑥 + (1 + 𝑚2)𝑡 

5 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6𝑚2 sn𝜉 +
√−6

sn𝜉
 with 𝜉 = 𝑥 + ((1 + 𝑚2) + 6√𝑚2) 𝑡 

6 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6𝑚2 sn𝜉 −
√−6

sn𝜉
 with 𝜉 = 𝑥 − ((1 + 𝑚2) + 6√𝑚2) 𝑡 

7 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6𝑚2 sn𝜉 +
√−6

sn𝜉
 with 𝜉 = 𝑥 − ((1 + 𝑚2) + 6√𝑚2) 𝑡 

8 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6𝑚2 sn𝜉 −
√−6

sn𝜉
 with 𝜉 = 𝑥 + ((1 + 𝑚2) + 6√𝑚2) 𝑡 
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Table 7. Exact Solutions of Equation (6) in Hyperbolic Functions for Table 3 Case 1 

Case Exact Solutions in Hyperbolic Functions 

1 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6 tanh(𝜉) with 𝜉 = 𝑥 + 2𝑡 

2 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6 tanh(𝜉) with 𝜉 = 𝑥 + 2𝑡 

3 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
√−6

tanh(𝜉)
 with 𝜉 = 𝑥 + 2𝑡 

4 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
−√−6

tanh(𝜉)
 with 𝜉 = 𝑥 + 2𝑡 

5 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6 tanh(𝜉) +
√−6

tanh(𝜉)
 with 𝜉 = 𝑥 + 8𝑡 

6 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = √−6 tanh(𝜉) −
√−6

tanh(𝜉)
 with 𝜉 = 𝑥 − 8𝑡 

7 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6 tanh(𝜉) +
√−6

tanh(𝜉)
 with 𝜉 = 𝑥 − 8𝑡 

8 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = −√−6 tanh(𝜉) −
√−6

tanh(𝜉)
 with 𝜉 = 𝑥 + 8𝑡 

 

Table 8. Exact Solutions of Equation (6) in Trigonometric Functions for Table 3 Case 1 

Case Exact Solutions in Trigonometric Functions 

1,2 𝑢(𝑥, 𝑡) = 𝑈(𝜉) = 0 with 𝜉 = 𝑥 + 𝑡 

3,5 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
√−6

sin(𝜉)
 with 𝜉 = 𝑥 + 𝑡 

4,8 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
−√−6

sin(𝜉)
 with 𝜉 = 𝑥 + 𝑡 

6 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
−√−6

sin(𝜉)
 with 𝜉 = 𝑥 − 𝑡 

7 𝑢(𝑥, 𝑡) = 𝑈(𝜉) =
√−6

sin(𝜉)
 with 𝜉 = 𝑥 − 𝑡 

 

Based on Table 6, Table 7, and Table 8, there are 8 solutions in the form of Jacobi elliptic 

functions, 8 solutions in the form of hyperbolic functions, and 4 solutions in the form of 

trigonometric functions because there are cases that obtain the same solutions and there are 

solutions in the form of constant functions. In this article, we only discuss one case in Table 3 

as an illustration, while other cases can be solved in a similar way. 

The mKdV wave equation studied in this paper has solved in previous studies using the 

F-expansion method (Bashir & Alhakim, 2013). In this paper, we use the extended F-expansion 

method to determine the exact solution of the mKdV wave equation. The general form of 

solutions obtained using the extended F-expansion method are more complete than using the F-

expansion method. The result of an exact solutions are expressed in the form of Jacobi elliptic 

functions, hyperbolic functions, and trigonometric functions with some of the solutions are the 

same as previous studies but there are also several different variations. In addition, several other 

methods have also been used by previous researchers to construct the exact solutions of the 

mKdV wave equation (Chai et al., 2014; Islam et al., 2015; Ji & Zhu, 2017; Nuruddeen, 2018; 

Gao et al., 2019). However, the exact solutions obtained in previous studies were expressed in 

the form of functions that were different from this study.  

 

CONCLUSIONS 

The extended F-expansion method is one of the most effective methods in determining the exact 

solutions of various differential equations. In this study, the modified Korteweg-de Vries 
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(mKdV) equation was successfully solved using the extended F-expansion method and some 

exact solutions are expressed in the form of Jacobi elliptic functions, hyperbolic functions, and 

trigonometric functions. The correctness of all the exact solutions is verified by substituting the 

solutions into original equation (mKdV). The exact solution obtained using the extended F-

expansion method is more varied than the exact solution obtained in previous studies. In this 

study, the extended F-expansion method is used to determine the exact solutions of the third-

order mKdV equation. Further studies are needed to apply this method in determining the 

solution of the mKdV equation with a higher-order.  
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