Berberine: A Potential Inhibitor of Dihydrofolate Reductase- Thymidylate Synthase (DHFR-TS) for Malaria

Yohanes Bare, Dewi Ratih Tirto Sari, Angeliana Desimaris Nita, Maximus M Taek

Abstract


The goal of this study was to genetically link natural materials derived from Tinospora crispa L with Berberine to dihydrofolate reductase-thymidylate synthase (DHFR-TS). Method: The ligand berberine (CID: 2353) was obtained from Pubchem, while the protein DHFR-TS (PDB ID 2bl9) was obtained from Protein Data Bank. The ligands and proteins interacted with HEX 8.0.0.0 and were visualized with Discovery Studio. The researchers discovered a positive interaction between berberine and DHFR-TS, observed at four amino acid residues that bind to the protein TYR125, ILE121, LEU45, and MET54. Van der Waals interactions, hydrogen bonds, Pi-Sulfur, Pi-Alkyl, and Pi-Stalked interactions all contribute to strength and stability. In conclusion, berberine has the potential to act as a DHFR-TS inhibitor and thus prevent malaria.

ABSTRAK: Tujuan penelitian ini adalah memanfaatkan bahan alam yang berasal dari Tinospora crispa L dengan kandungan utama Berberin dengan dihydrofolate reductase-thymidylate synthase (DHFR-TS) secara genetik. Metode, Ligan berberin (CID: 2353 ) diperoleh dari Pubchem sedangkan protein DHFR-TS (PDB ID 2bl9) diperoleh dari Protein Data Bank, ligan dan protein diinteraksikan menggunakan HEX 8.0.0.0 dan divisualisasikan menggunakan discovery studio. Ditemukan interaksi positif antara berberin dan DHFR-TS yang menunjukkan interaksi pada empat residu asam amino yang berikatan dengan protein. Mereka adalah TYR125, ILE121, LEU45 dan MET54. Beberapa interaksi yang dilakukan Van der Waals, ikatan hidrogen, Pi-Sulfur, Pi-Alkyl dan Pi-Stalked juga memberikan dukungan dalam rangka meningkatkan kekuatan dan stabilisasi. Kesimpulannya, berberin memiliki potensi fungsi sebagai penghambat DHFR-TS dan mengarah pada malaria.


Keywords


Berberine; DHFR-TS; Malaria; Tinospora crispa L

Full Text:

PDF

References


Auliff, A. M., Balu, B., Chen, N., O’Neil, M. T., Cheng, Q., & Adams, J. H. (2012). Functional Analysis of Plasmodium vivax Dihydrofolate Reductase-Thymidylate Synthase Genes through Stable Transformation of Plasmodium falciparum. PLoS ONE, 7(7), e40416. https://doi.org/10.1371/journal.pone.0040416

Bare, Y. (2021). ANALISIS SENYAWA FITOSTEROL Cymbopogon citratus dan Curcuma longa SEBAGAI ANTIALZHEIMER. Biopendix: Jurnal Biologi, Pendidikan dan terapan, 7(2), 53–159. https://doi.org/10.30598/biopendixvol7issue2page153-159

Bare, Y., Helvina, M., Krisnamurti, G. C., & S, M. (2020). The Potential Role of 6-gingerol and 6-shogaol as ACE Inhibitors in Silico Study. Biogenesis: Jurnal Ilmiah Biologi, 8(2), 210. https://doi.org/10.24252/bio.v8i2.15704

Bare, Y., Indahsari, L. I. N., Sari, D. R. T., & Watuguly, T. (2021). In Silico Study: Potential Prediction of Curcuma longa And Cymbopogon citratus Essential Oil As Lipoxygenase Inhibitor Yohanes. JSMARTech, 02(02), 76–80. https://doi.org/10.21776/ub.jsmartech.2021.002.02.75 In

Bare, Y., Maulidi, A., Sari, D. R. T., & Tiring, S. S. N. D. (2019). Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK). Jurnal Jejaring Matematika Dan Sains, 1(2), 59–63. https://doi.org/10.36873/jjms.v1i2.211

Bare, Y., & Sari, D. R. T. (2021). Pengembangan Lembar Kerja Mahasiswa (LKM) Berbasis Inkuiri Pada Materi Interaksi Molekuler. BioEdUIN, 11(1), 8. https://doi.org/10.15575/bioeduin.v11i1.12077

Bare, Y., Sari, D. R. T., Mogi, M. C., & Meak, L. E. C. (2022). In silico study of columbin from Tinospora crispa L. as dihydrofolate reductase-thymidylate synthase (DHFR-TS) inhibitor. Bioscience, 6(1), 6. https://doi.org/10.24036/0202261116090-0-00

Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00006

Cowell, A. N., & Winzeler, E. A. (2019). The genomic architecture of antimalarial drug resistance. Briefings in Functional Genomics, 18(5), 314–328. https://doi.org/10.1093/bfgp/elz008

de Mendonça, V. R. R., Goncalves, M. S., & Barral-Netto, M. (2012). The Host Genetic Diversity in Malaria Infection. Journal of Tropical Medicine, 2012, 1–17. https://doi.org/10.1155/2012/940616

Elfi, T. N., Bunga, Y. N., & Bare, Y. (2021). Studi Aktivitas Biologi Secara In Silico Senyawa Nonivamide Dan Nordihydrocapsaicin Sebagai Anti Inflamasi. Florea : Jurnal Biologi dan Pembelajarannya, 8(2), 82. https://doi.org/10.25273/florea.v8i2.9983

Gibson, M. W., Dewar, S., Ong, H. B., Sienkiewicz, N., & Fairlamb, A. H. (2016). Trypanosoma brucei DHFR-TS Revisited: Characterization of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase. PLOS Neglected Tropical Diseases, 10(5), e0004714. https://doi.org/10.1371/journal.pntd.0004714

Gorelova, V., De Lepeleire, J., Van Daele, J., Pluim, D., Meï, C., Cuypers, A., Leroux, O., Rébeillé, F., Schellens, J. H. M., Blancquaert, D., Stove, C. P., & Van Der Straeten, D. (2017). Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. The Plant Cell, 29(11), 2831–2853. https://doi.org/10.1105/tpc.17.00433

Imlay, L. S., Armstrong, C. M., Masters, M. C., Li, T., Price, K. E., Edwards, R. L., Mann, K. M., Li, L. X., Stallings, C. L., Berry, N. G., O’Neill, P. M., & Odom, A. R. (2015). Plasmodium IspD (2-C-Methyl-d-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infectious Diseases, 1(4), 157–167. https://doi.org/10.1021/id500047s

Kesuma, D., Siswandono, S., Purwanto, B. T., & Hardjono, S. (2018). Uji in silico Aktivitas Sitotoksik dan Toksisitas Senyawa Turunan N-(Benzoil)-N’- feniltiourea Sebagai Calon Obat Antikanker. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 3(1), 1. https://doi.org/10.20961/jpscr.v3i1.16266

Kojom Foko, L. P., Eya'ane Meva, F., Eboumbou Moukoko, C. E., Ntoumba, A. A., Ngaha Njila, M. I., Belle Ebanda Kedi, P., Ayong, L., & Lehman, L. G. (2019). A systematic review on antimalarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: Overview, challenges and future perspectives. Malaria Journal, 18(1), 337. https://doi.org/10.1186/s12936-019-2974-9

Krisnamurti, G. C., Thian, B. K., Krisnamurti, G. C., Ratih, D., Sari, T., & Bare, Y. (2021). Capsaicinoids from Capsicum annuum as an Alternative FabH Inhibitor of Mycobacterium Tuberculosis: In Silico Study Capsaicinoids from Capsicum annuum as an Alternative FabH Inhibitor of Mycobacterium Tuberculosis: In Silico Study. Makara Journal of Science, 25(4), 195–202. https://doi.org/10.7454/mss.v25i4.1248

Landau, M. J., Sharma, H., & Anderson, K. S. (2013). Selective peptide inhibitors of bifunctional thymidylate synthase-dihydrofolate reductase from Toxoplasma gondii provide insights into domain-domain communication and allosteric regulation: Peptide Inhibitors of Parasitic TS-DHFR. Protein Science, 22(9), 1161–1173. https://doi.org/10.1002/pro.2300

Lu, G., Nagbanshi, M., Goldau, N., Mendes Jorge, M., Meissner, P., Jahn, A., Mockenhaupt, F. P., & Müller, O. (2018). Efficacy and safety of methylene blue in the treatment of malaria: A systematic review. BMC Medicine, 16(1), 59. https://doi.org/10.1186/s12916-018-1045-3

Luzz, M., Berman, J., Toledo, J., Llinas, N., Gutierrez, P., Soto, J., Dunne, M., & Cedeño, N. (2001). Plasmodium vivax clinically resistant to chloroquine in Colombia. The American Journal of Tropical Medicine and Hygiene, 65(2), 90–93. https://doi.org/10.4269/ajtmh.2001.65.90

M Taek, M., Prajogo EW, B., & Agil, M. (2018). Ethnomedicinal Plants Used for the Treatment of Malaria in Malaka, West Timor. Journal of Young Pharmacists, 10(2), 187–192. https://doi.org/10.5530/jyp.2018.10.42

Malik, M. M. (2015). The Potential Of Brotowali Stem Extract (Tinospora Crispa) As Analternative Antimalarial Drug. Medical journal of Lambung Mangkurat, 5.

Poespoprodjo, J. R., Fobia, W., Kenangalem, E., Lampah, D. A., Hasanuddin, A., Warikar, N., Sugiarto, P., Tjitra, E., Anstey, N. M., & Price, R. N. (2009). Vivax Malaria: A Major Cause of Morbidity in Early Infancy. Clinical Infectious Diseases, 48(12), 1704–1712. https://doi.org/10.1086/599041

Purba, I. E., Hadi, U. K., & Hakim, L. (2017). Analisis Pengendalian Malaria Di Provinsi Nusa Tenggara Timur Dan Rencana Strategis Untuk Mencapai Eliminasi Malaria. SPIRAKEL, 8(2), 18–26. https://doi.org/10.22435/spirakel.v8i2.6164.18-26

Sari, D. R. T., Safitri, A., Cairns, J. R. K., & Fatchiyah, F. (2020a). Anti-Apoptotic Activity of Anthocyanins has Potential to inhibit Caspase-3 Signaling. Journal of Tropical Life Science, 10(1), 15–25. https://doi.org/10.11594/jtls.10.01.03

Sari, D. R. T., Safitri, A., Cairns, J. R. K., & Fatchiyah, F. (2020b). Virtual screening of black rice anthocyanins as antiobesity through inhibiting TLR4 and JNK pathway Virtual screening of black rice anthocyanins as antiobesity through inhibiting TLR4 and JNK pathway. Journal of Physics: Conference Series PAPER, 1665(1), 1–7. https://doi.org/10.1088/1742-6596/1665/1/012024

Schröter, D., Neugart, S., Schreiner, M., Grune, T., Rohn, S., & Ott, C. (2019). Amaranth’s 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages. Nutrients, 11(3), 571. https://doi.org/10.3390/nu11030571

Selasa, P. (2017). Implementasi Kebijakan Eliminasi Malaria di Pusat Kesehatan Masyarakat Kota Kupang. Jurnal Info Kesehatan, 15(1).

Taek, M. M., Banilodu, L., Neonbasu, G., Watu, Y. V., E.W., B. P., & Agil, M. (2019). Ethnomedicine of Tetun ethnic people in West Timor Indonesia: Philosophy and practice in the treatment of malaria. Integrative Medicine Research, 8(3), 139–144. https://doi.org/10.1016/j.imr.2019.05.005

Tse, E. G., Korsik, M., & Todd, M. H. (2019). The past, present and future of antimalarial medicines. Malaria Journal, 18(1), 93. https://doi.org/10.1186/s12936-019-2724-z

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0

Willa, R. W., & Mading, M. (2014). Situasi Malaria di Kabupaten Sumba Barat. Jurnal Penyakit Bersumber Binatang, 2(1), 12.

Yesi, Zen, S., & Achyani. (2019). Pengaruh Variasi Dosis Ekstrak Batang Brotowali (Trinospora crispa L.) Terhadap Mortalitas Hama Kutu Daun (Aphis gossypii L.) Tanaman Mentimun (Cucumis sativus L.) Sebagai Sumber Belajar Biologi. BIOEDUKASI Jurnal Pendidikan Biologi, 10(2).

Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., & Yuthavong, Y. (2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural & Molecular Biology, 10(5), 357–365. https://doi.org/10.1038/nsb921




DOI: http://dx.doi.org/10.24042/biosfer.v13i1.11145

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Biosfer: Jurnal Tadris Biologi

License URL: https://creativecommons.org/licenses/by-sa/4.0