The Digestibility of Banana Peel and Testa coconut and Its Effects on the Growth and Mortality of Black Soldier Fly Larvae (Hermetia illucens) at Constant Feeding Rates

Ramadhani Eka Putra, Alfariana Margareta, Ida Kinasih

Abstract


Organic waste produced by economic activities may create health, aesthetic, and economic problems. One of the approaches applied to solve this problem is the utilization of decomposer macrofauna to decompose the waste. One of the decomposers with great potential is Black Soldier Fly larvae (Hermetia illucens) that can consume various types of organic wastes and converts it into biomass with high protein and lipid content. In this study, banana peels and coconut testa had been fed to the larvae at 200 mg/larvae/day as the objects that represented organic wastes with low fiber content and high fiber content respectively. The purpose of this study was to observe the growth and efficiency of BSF larvae in decomposing those wastes. The analysis was conducted on some parameters such as the growth and consumption rate, the efficiency of conversion of digested (ECD), waste reduction index, and mortality rate. The results showed that BSF larvae THAT consumed banana peel had a higher final weight (58.24 mg), growth rate, and consumption rate while the mortality rate was lower than BSF larvae that consumed coconut testa. The ECD of the larvae group that consumed banana peel was higher than the larvae group that consumed coconut testa. The waste reduction index of banana peel was higher than coconut testa (1.5 and 1.4, respectively). The larvae that consumed coconut testa had a longer pupation period (9±1,75 days) compared to the larvae that consumed banana peel. Based on this result, it can be concluded that the fiber content of organic waste affected the decomposition rate and growth of BSF larvae.


Keywords


Decomposition Hermetia illucens; Banana peel; Testa coconut; WRI (Waste Reduction Index); ECD (Efficiency of Conversion of Digested Feed).

Full Text:

PDF

References


Anhwange, B. A., Ugye, T. J., & Nyiaatagher, T. D. (2009). Chemical composition of Musa sapientum (Banana) peels. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8(6), 437–442.

Appaiah, P., Sunil, L., Prasanth Kumar, P. K., & Gopala Krishna, A. G. (2014). Composition of coconut testa, coconut kernel and its oil. JAOCS, Journal of the American Oil Chemists’ Society, 91(6), 917–924. https://doi.org/10.1007/s11746-014-2447-9

Bogner, J. E., Spokas, K. A., & Chanton, J. P. (2011). Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils. Journal of Environmental Quality, 40(3), 1010–1020. https://doi.org/10.2134/jeq2010.0407

Cammack, J. A., & Tomberlin, J. K. (2017). The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects, 8(2). https://doi.org/10.3390/insects8020056

Cheng, J. Y. K., Chiu, S. L. H., & Lo, I. M. C. (2017). Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Management, 67(June 2017), 315–323. https://doi.org/10.1016/j.wasman.2017.05.046

Chia, S. Y., Tanga, C. M., Osuga, I. M., Mohamed, S. A., Khamis, F. M., Salifu, D., Sevgan, S., Fiaboe, K. K. M., Niassy, S., van Loon, J. J. A., Dicke, M., & Ekesi, S. (2018). Effects of waste stream combinations from brewing industry on performance of black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). PeerJ, 2018(11), 1–26. https://doi.org/10.7717/peerj.5885

Čičková, H., Newton, G. L., Lacy, R. C., & Kozánek, M. (2015). The use of fly larvae for organic waste treatment. Waste Management (New York, N.Y.), 35, 68–80. https://doi.org/10.1016/j.wasman.2014.09.026

Danieli, P. P., Lussiana, C., Gasco, L., Amici, A., & Ronchi, B. (2019). The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals, 9(4), 178.

De Smet, J., Wynants, E., Cos, P., & Van Campenhout, L. (2018). Microbial Community Dynamics during Rearing of Black. Applied and Environmental Microbiology, 84(9), 1–17. https://doi.org/10.1128/AEM .02722-17

Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C., & Tockner, K. (2011). Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste and Biomass Valorization, 2(4), 357–363. https://doi.org/10.1007/s12649-011-9079-1

Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Management and Research, 27(6), 603–610. https://doi.org/10.1177/0734242X09103838

Dirjen Hortikultura Kementerian Pertanian. (2015). Statistik Produksi Hortikultura Tahun 2014.

Dmitriew, C. (2011). The evolution of growth trajectories: What limits growth rate? Biological Reviews of the Cambridge Philosophical Society, 86, 97–116. https://doi.org/10.1111/j.1469-185X.2010.00136.x

Dzepe, D., Nana, P., & Tchuinkam, T. (2019). Influence of larval density, substrate moisture content and feedstock ratio on life history traits of black soldier fly larvae.

Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S., & Lalander, C. (2020). Fatty acid composition of black soldier fly larvae (Hermetia illucens)–Possibilities and limitations for modification through diet. Waste Management, 102, 40–47.

Fogg, G. E. (1975). Algae Culture and Phytoplankton Ecology (Second Edi). Maddison : University of Winconsin Press.

Gao, Z., Wang, W., Lu, X., Zhu, F., Liu, W., Wang, X., & Lei, C. (2019). Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. Journal of Cleaner Production, 230(May), 974–980. https://doi.org/10.1016/j.jclepro.2019.05.074

Gobbi, P., Martínez-Sánchez, A., & Rojo, S. (2013). The effects of larval diet on adult life-history traits of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). European Journal of Entomology, 110(3), 461–468. https://doi.org/10.14411/eje.2013.061

Gobbi, P., Martinez-Sanchez, A., & Rojo, S. (2013). The effects of larval diet on adult life-history traits of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). European Journal of Entomology, 110(3), 461.

Hakim, A. R., Presetyo, A., & Petrus, H. B. M. (2017). Potensi Larva Hermetian illucens Sebagai Pereduksi Limbah Industry Pengolahan Hasil Perikanan. Jurnal Perikanan, 39–44.

Isibika, A., Vinnerås, B., Kibazohi, O., Zurbrügg, C., & Lalander, C. (2019). Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Waste Management, 100, 151–160. https://doi.org/10.1016/j.wasman.2019.09.017

Jucker, C., Lupi, D., Moore, C. D., Leonardi, M. G., & Savoldelli, S. (2020). Nutrient recapture from insect farm waste: Bioconversion with hermetia illucens (L.)(Diptera: Stratiomyidae). Sustainability, 12(1), 362.

Khan, S. H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. Journal of Applied Animal Research, 46(1), 1144–1157. https://doi.org/10.1080/09712119.2018.1474743

Kinasih, I., Putra, R. E., Permana, A. D., Gusmara, F. F., Nurhadi, M. Y., & Anitasari, R. A. (2018). Growth performance of black soldier fly larvae (Hermetia illucens) fed on some plant based organic wastes. HAYATI Journal of Biosciences, 25(2), 79–84. https://doi.org/10.4308/hjb.25.2.79

Lalander, C., Diener, S., Zurbrügg, C., & Vinnerås, B. (2019). Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production, 208(October), 211–219. https://doi.org/10.1016/j.jclepro.2018.10.017

Lee, C. M., Lee, Y. S., Seo, S. H., Yoon, S. H., Kim, S. J., Hahn, B. S., Sim, J. S., & Koo, B. S. (2014). Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia Illucens using metagenomic library. Journal of Microbiology and Biotechnology, 24(9), 1196–1206. https://doi.org/10.4014/jmb.1405.05001

Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J. K., & Yu, Z. (2011). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Management, 31(6), 1316–1320. https://doi.org/10.1016/j.wasman.2011.01.005

Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Ziniu, yu, & Zhang, Y. (2015). Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technology, 194, 276–282. https://doi.org/10.1016/j.biortech.2015.06.112

Li, Z., Guo, K., Lin, L., He, W., Zhang, L., & Wei, C. (2018). Comparison of physicochemical properties of starches from flesh and Peel of Green Banana Fruit. Molecules, 23(9), 1–15. https://doi.org/10.3390/molecules23092312

Liu, Z., Minor, M., Morel, P. C. H., & Najar-Rodriguez, A. J. (2018). Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 47(6), 1609–1617. https://doi.org/10.1093/ee/nvy141

Lohri, C. R., Diener, S., Zabaleta, I., Mertenat, A., & Zurbrügg, C. (2017). Treatment technologies for urban solid biowaste to create value products: A review with focus on low- and middle-income settings. Reviews in Environmental Science and Biotechnology, 16(1), 81–130. https://doi.org/10.1007/s11157-017-9422-5

MacWhinnie, S. G. B., Allee, J. P., Nelson, C. A., Riddiford, L. M., Truman, J. W., & Champlin, D. T. (2005). The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta. Developmental Biology, 285(2), 285–297. https://doi.org/10.1016/j.ydbio.2005.06.021

Mahmud, Z., & Yulius, D. A. N. (2004). Prospek Pengolahan Hasil Samping Buah Kelapa. 1.

Mangel, M., & Munch, S. B. (2005). A life-history perspective on short- and long-term consequences of compensatory growth. The American Naturalist, 166(6). https://doi.org/10.1086/444439

Manurung, R., Supriatna, A., & Esyanthi, R. R. (2016). Bioconversion of Rice straw waste by black soldier fly larvae ( Hermetia illucens L .): Optimal feed rate for biomass production. Journal of Entomology and Zoology Studies, 4(4), 1036–1041.

Manurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): Optimal feed rate for biomass production. J. Entomol. Zool. Stud, 4(4), 1036–1041.

Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., & Gasco, L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. Journal of the Science of Food and Agriculture, 98(15), 5776–5784.

Myers, H. M., Tomberlin, J. K., Lambert, B. D., & Kattes, D. (2014). Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environmental Entomology, 37(1), 11–15.

Nijhout, H. F. (2003). The control of body size in insects. Developmental Biology, 261(1), 1–9. https://doi.org/10.1016/S0012-1606(03)00276-8

Ohkuma, M. (2003). Ohkuma M.. Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61: 1-9. Applied Microbiology and Biotechnology, 61, 1–9. https://doi.org/10.1007/s00253-002-1189-z

Oonincx, D. G., Van Broekhoven, S., Van Huis, A., & van Loon, J. J. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 10(12), e0144601.

Oonincx, D., Van Huis, A., & Van Loon, J. J. A. (2015). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects as Food and Feed, 1(2), 131–139.

Palma, L., Fernandez-Bayo, J., Niemeier, D., Pitesky, M., & VanderGheynst, J. S. (2019). Managing high fiber food waste for the cultivation of black soldier fly larvae. Npj Science of Food, 3(1). https://doi.org/10.1038/s41538-019-0047-7

Parra Paz, A. S., Carrejo, N. S., & Gómez Rodríguez, C. H. (2015). Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste and Biomass Valorization, 6(6), 1059–1065. https://doi.org/10.1007/s12649-015-9418-8

Rehman, K., Cai, M., Xiao, X., Zheng, L., Wang, H., Soomro, A. aziz, Zhou, Y., Li, W., Ziniu, yu, & Zhang, J. (2017). Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock ( Hermetia illucens L.). Journal of Environmental Management, 196, 458–465. https://doi.org/10.1016/j.jenvman.2017.03.047

Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140(March 2019), 890–905. https://doi.org/10.1016/j.jclepro.2016.06.154

Scriber, J. M., & Slansky, F. (1981). The Nutritional Ecology of Immature Insects. Annual Review of Entomology, 26(1), 183–211. https://doi.org/10.1146/annurev.en.26.010181.001151

Setti, L., Francia, E., Pulvirenti, A., Gigliano, S., Zaccardelli, M., Pane, C., Caradonia, F., Bortolini, S., Maistrello, L., & Ronga, D. (2019). Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Management (New York, N.Y.), 95, 278–288. https://doi.org/10.1016/j.wasman.2019.06.017

Sripontan, Y., Chiu, C.-I., Tanansathaporn, S., Leasen, K., & Manlong, K. (2020). Modeling the Growth of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae): An Approach to Evaluate Diet Quality. Journal of Economic Entomology, 113(2), 742–751. https://doi.org/10.1093/jee/toz337

Supriyatna, A., & Ukit, U. (2016). Screening and Isolation of Cellulolytic Bacteria from Gut of Black Soldier Flays Larvae (Hermetia illucens) Feeding with Rice Straw. Biosaintifika: Journal of Biology & Biology Education, 8(3), 314. https://doi.org/10.15294/biosaintifika.v8i3.6762

Taggar, M. S. (2015). Insect cellulolytic enzymes: Novel sources for degradation of lignocellulosic biomass. Journal of Applied and Natural Science, 7, 625–630. https://doi.org/10.31018/jans.v7i2.656

Telang, A., Frame, L., & Brown, M. R. (2007). Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Journal of Experimental Biology, 210(5), 854–864. https://doi.org/10.1242/jeb.02715

Tschirner, M., & Simon, A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Journal of Insects as Food and Feed, 1(4), 249–259. https://doi.org/10.3920/JIFF2014.0008

ur Rehman, K., Cai, M., Xiao, X., Zheng, L., Wang, H., Soomro, A. A., Zhou, Y., Li, W., Yu, Z., & Zhang, J. (2017). Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). Journal of Environmental Management, 196, 458–465.

Wang, Y.-S., & Shelomi, M. (2017). Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods, 6(10), 91. https://doi.org/10.3390/foods6100091

Zheng, L., Hou, Y., Li, W., Yang, S., Li, Q., & Ziniu, yu. (2012). Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 47, 225–229. https://doi.org/10.1016/j.energy.2012.09.006

Zheng, L., Li, Q., Zhang, J., & Yu, Z. (2012). Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy, 41, 75–79. https://doi.org/10.1016/j.renene.2011.10.004

Zhou, F., Tomberlin, J. K., Zheng, L., Yu, Z., & Zhang, J. (2013). Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. Journal of Medical Entomology, 50(6), 1224–1230. https://doi.org/10.1603/ME13021




DOI: http://dx.doi.org/10.24042/biosfer.v11i1.6450

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Biosfer: Jurnal Tadris Biologi

License URL: https://creativecommons.org/licenses/by-sa/4.0