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For any (not necessary connected) graph 𝐺(𝑉, 𝐸) and 𝐴 ⊆ 𝑉(𝐺), the 
distance of a vertex 𝑥 ∈ 𝑉(𝐺) and 𝐴 is 𝑑(𝑥, 𝐴) = 𝑚𝑖𝑛{𝑑(𝑥, 𝑎): 𝑎 ∈ 𝐴}. 
A subset of vertices 𝐴 resolves two vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) if 𝑑(𝑥, 𝐴) ≠
𝑑(𝑦, 𝐴). For an ordered partition 𝛬 = {𝐴1, 𝐴2, … , 𝐴𝑘} of  𝑉(𝐺), if all 
𝑑(𝑥, 𝐴𝑖) < ∞ for all 𝑥 ∈ 𝑉(𝐺), then the representation of 𝑥 under 𝛬 is 
𝑟(𝑥|𝛬) = (𝑑(𝑥, 𝐴1), 𝑑(𝑥, 𝐴2), … , 𝑑(𝑥, 𝐴𝑘)). Such a partition 𝛬 is a 
resolving partition of 𝐺 if every two distinct vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) are 
resolved by 𝐴𝑖  for some 𝑖 ∈ [1, 𝑘]. The smallest cardinality of a 
resolving partition 𝛬 is called a partition dimension of 𝐺 and denoted 
by 𝑝𝑑(𝐺) or 𝑝𝑑𝑑(𝐺) for connected or disconnected 𝐺, respectively. If 
𝐺 have no resolving 𝑘 −partition, then 𝑝𝑑𝑑(𝐺) = ∞. In this paper, we 
studied the partition dimension of disjoint union of complete bipartite 
graph, namely 𝑡𝐾𝑚,𝑛 where 𝑡 ≥ 1 and 𝑚 ≥ 𝑛 ≥ 2. We gave the 

necessary condition such that the partition dimension of 𝑡𝐾𝑚,𝑛 are 

finite. Furthermore, we also derived the necessary and sufficient 
conditions such that 𝑝𝑑𝑑(𝑡𝐾𝑚,𝑛) is either equal to m or m+1. 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 

INTRODUCTION 

The idea of resolvability and location in 
graph were described independently by 
Slater in 1975 and Harary & Melter in 
1976, to establish the same structure in a 
graph. This concept is then known as the 
metric dimension of a graph. In 1998 
Chartrand et al. introduced the partition 
dimension parameter to possibly gain 
insight into metric dimension. Recently in 
2015, Haryeni et al. generalized the 
definition of the partition dimension of a 

graph such that it can be also applied to 
disconnected graphs. 

For any (not necessary connected) 
graph 𝐺(𝑉, 𝐸) and 𝐴 ⊆ 𝑉(𝐺), the distance 
of a vertex 𝑥 ∈ 𝑉(𝐺) and 𝐴, denoted by 
𝑑(𝑥, 𝐴), is min{𝑑(𝑥, 𝑎): 𝑎 ∈ 𝐴}. If 𝑑(𝑥, 𝐴) ≠
𝑑(𝑦, 𝐴), then we say 𝐴 resolves two 
vertices 𝑥, 𝑦 ∈ 𝑉(𝐺). For an ordered 
partition Λ = {𝐴1, 𝐴2, … , 𝐴𝑘} of 𝑉(𝐺), if all 
𝑑(𝑥, 𝐴𝑖) < ∞ for all 𝑥 ∈ 𝑉(𝐺), then define 
the representation of 𝑥 under Λ  as 
(𝑑(𝑥, 𝐴1), 𝑑(𝑥, 𝐴2), … , 𝑑(𝑥, 𝐴𝑘)), and 
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denoted by 𝑟(𝑥|Λ). A partition Λ  is a 
resolving partition of 𝐺 if every two 
distinct vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) are resolved 
by some 𝐴𝑖 , or in short 𝑑(𝑥, 𝐴𝑖) ≠ 𝑑(𝑦, 𝐴𝑖) 
for some 𝑖 ∈ [1, 𝑘]. The smallest 
cardinality of a resolving partition Λ in 𝐺 is 
called a partition dimension of 𝐺. We use 
the notation 𝑝𝑑(𝐺) (or 𝑝𝑑𝑑(𝐺), 
respectively) for the partition dimension 
of connected (or disconnected) 𝐺. In case 
of 𝐺 having no resolving 𝑘 −partition, then 
define 𝑝𝑑𝑑(𝐺) = ∞. 

For connected graph, some authors 
have characterized the graphs of order 𝑛 
with certain partition dimension, namely 
for 𝑝𝑑(𝐺) ∈ {2, 𝑛 − 1, 𝑛} by Chartrand et 
al. (2000), 𝑝𝑑(𝐺) = 𝑛 − 2 by Tomescu 
(2008) and 𝑝𝑑(𝐺) = 𝑛 − 3 by Baskoro & 
Haryeni (2020). The partition dimension 
of graphs with some graph operations also 
have been studied, such as for Cartesian 
product by Yero et a. (2010) and for strong 
product by Yero et al. (2014).   

For the disconnected graphs 𝐺, 
many results in determining 𝑝𝑑𝑑(𝐺) have 
been obtained such as for linear forest 
𝑚𝑃𝑛, ⋃ 𝑃𝑛𝑖

𝑡
𝑖=1 , and  𝐾3 ∪𝑚𝑃𝑛 (Haryeni et al. 

2017), and for disjoin union of star 
⋃ 𝐾1,𝑛𝑖
𝑡
𝑖=1 , double star forest 𝑚𝑇(𝑟, 𝑠), and 

disjoint union of cycles (Haryeni et al., 
2015). There were also some results on 
the partition dimension of two-
component graphs (Haryeni et al., 2017). 
In this paper, we determine the partition 
dimension of a disjoint union of complete 
bipartite graph 𝑡𝐾𝑚,𝑛, where 𝑚 ≥ 𝑛 ≥ 2. 

The following known results will 
be used in the main part of this paper. 

Lemma 1. (Chartrand et al., 2000) 
Let Λ be a resolving partition of 𝑉(𝐺) and 
𝑢, 𝑣 ∈ 𝑉(𝐺). If 𝑑(𝑢, 𝑤) = 𝑑(𝑣,𝑤) for all 
𝑤 ∈ 𝑉(𝐺) − {𝑢, 𝑣}, then 𝑢 and 𝑣 belong to 
distinct partition classes of Λ.  

Furthermore, the two vertices 𝑢 
and 𝑣 satisfying Lemma 1 are called twin 
vertices. 

Theorem 1. (Chartrand et al., 2000) 
Let 𝐺 be a connected bipartite graph with 
partite sets 𝑉1 and 𝑉2 of cardinalities 
𝑚 and 𝑛, respectively. Then 

1) 𝑝𝑑(𝐺) ≤ 𝑚 + 1, if 𝑚 = 𝑛 and 

2) 𝑝𝑑(𝐺) ≤ max{𝑚, 𝑛}, if 𝑚 ≠ 𝑛. 

Moreover, equality holds in 1) or 2), if and 
only if 𝐺 is complete bipartite graph. 

 Theorem 2.  (Haryeni, Baskoro, 
2017) Let 𝐺 = ⋃ 𝐺𝑖

𝑚
𝑖=1 . If 𝑝𝑑𝑑(𝐺) < ∞, 

then we have that max{𝑝𝑑(𝐺𝑖) ∶ 1 ≤ 𝑖 ≤
𝑚} ≤  𝑝𝑑𝑑(𝐺) ≤ min{|𝑉(𝐺𝑖)| ∶ 1 ≤ 𝑖 ≤
𝑚}. 

Definition 1.  (Haryeni, Baskoro, 
2017) For 𝑚 ≥ 1, let 𝐺 = ⋃ 𝐺𝑖

𝑚
𝑖=1  and Λ =

{𝐴1, 𝐴2, … , 𝐴𝑘} be a resolving partition of 
𝐺. For any integer 𝑡 ≥ 1, a vertex 𝑣 ∈ 𝑉 (𝐺) 
is defined as a 𝑡 −distance vertex if 
𝑑(𝑣, 𝐴𝑗) = 0 or 𝑡 for any 𝐴𝑗 ∈ Λ. 

METHOD  

In this paper, we determine the 
partition dimension of a disjoint union of 
complete bipartite graph 𝐺 = 𝑡𝐾𝑚,𝑛, 
where 𝑚 ≥ 𝑛 ≥ 2.  In general, to show that 
𝑝𝑑𝑑(𝐺) = 𝑘 for some 𝑘, we need to prove 
that the upper bound and the lower bound 
of the partition dimension of 𝐺 is equal to 
𝑘. To prove that 𝑝𝑑𝑑(𝐺) ≤ 𝑘, we define a 
partition of the vertices of 𝐺 with 𝑘 
elements such that every vertex of 𝐺 
admits distinct representations with 
respect to such partition. To show that 
𝑝𝑑𝑑(𝐺) ≥ 𝑘, we can prove by a 
contradiction. We assume that there exists 
a resolving (𝑘 − 1) −partition of 𝐺 such 
that for any definition of such partition it 
always leads to the contradiction. By this 
procedure, we can conclude that 
𝑝𝑑𝑑(𝐺) = 𝑘.  

RESULTS AND DISCUSSION 

In this section we will determine 
the partition dimension of a disjoint union 
of 𝑡 ≥ 1 copies of complete bipartite graph 
𝑡𝐾𝑚,𝑛, where 𝑚 ≥ 𝑛 ≥ 2. We begin this 
part with some related lemmas, as follows. 
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Lemma 2.  Let 𝐾𝑚,𝑛 be a complete 
bipartite graph where 𝑚 > 𝑛 ≥ 2. In any 
minimum resolving partition of 𝐾𝑚,𝑛, then 
there are at least 𝑛 vertices which are 
1 −distance vertices. Furthermore, there 
exists exactly one 1 −distance vertex in 
any resolving (𝑚 + 1) −partition of 𝐾𝑚,𝑛. 

 
Proof. For 𝑚 > 𝑛 ≥ 2, let the set of 

vertices and edges of 𝐾𝑚,𝑛 be 

𝑉(𝐾𝑚,𝑛) = {𝑢𝑖, 𝑣𝑗: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛},    

𝐸(𝐾𝑚,𝑛) = {𝑢𝑖𝑣𝑗: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. 

 
By Theorem 1, 𝑝𝑑(𝐾𝑚,𝑛) = 𝑚. Let 

Λ1 = {𝐴1, 𝐴2, … , 𝐴𝑚} be any minimum 
resolving partition of 𝐾𝑚,𝑛. Since 

𝑑(𝑢𝑖, 𝑥) = 𝑑(𝑢𝑗 , 𝑥) for any 𝑥 ∈ 𝑉(𝐾𝑚,𝑛) −

{𝑢𝑖, 𝑢𝑗}, 𝑢𝑖  and 𝑢𝑗  belong to distinct 

partition class of Λ1 for every 𝑖, 𝑗 ∈ [1,𝑚], 
by Lemma 1. Without loss of generality, 
assume that 𝑢𝑖 ∈ 𝐴𝑖  for any 𝑖 ∈ [1,𝑚]. By a 
similar reason, since 𝑑(𝑣𝑖, 𝑦) = 𝑑(𝑣𝑗 , 𝑦) 

for any 𝑦 ∈ 𝑉(𝐾𝑚,𝑛) − {𝑣𝑖 , 𝑣𝑗}, we can 

assume that 𝑣𝑗 ∈ 𝐴𝑗  for any 𝑗 ∈ [1, 𝑛]. 

Therefore, 𝑣𝑗  is 1 −distance vertex for 

all 𝑗 ∈ [1, 𝑛].  
 
Now, let Λ2 = {𝐴1, 𝐴2, … , 𝐴𝑚+1} be a 

resolving (𝑚 + 1) −partition of 𝐾𝑚,𝑛. 
Without loss of generality assume that 
𝑢𝑖 ∈ 𝐴𝑖 for any 𝑖 ∈ [1,𝑚]. Since |Λ2| =
𝑚 + 1, there exists 𝑣𝑗 ∈ 𝐴𝑚+1 for some 𝑗 ∈

[1, 𝑛]. Thus, we may assume that 𝑣1 ∈
𝐴𝑚+1 and 𝑣𝑗 ∈ 𝐴𝑗−1 for all 𝑗 ∈ [2, 𝑛]. This 

implies that 𝑣1 is the only 1 −distance 
vertex with respect to Λ2. 

 
Lemma 3.  For integer 𝑚 ≥ 2, let 

𝐾𝑚,𝑚 be a complete bipartite graph. Then, 
in any minimum resolving partition of 
𝐾𝑚,𝑚 there are exactly two 1 −distance 
vertices.  

 
Proof. For 𝑚 ≥ 2, let the set of 

vertices and edges of 𝐾𝑚,𝑚 be 

𝑉(𝐾𝑚,𝑚) = {𝑢𝑖, 𝑣𝑗: 1 ≤ 𝑖, 𝑗 ≤ 𝑚},    

𝐸(𝐾𝑚,𝑚) = {𝑢𝑖𝑣𝑗: 1 ≤ 𝑖, 𝑗 ≤ 𝑚}. 

 
By using Theorem 1, 𝑝𝑑(𝐾𝑚,𝑚) =

𝑚 + 1. Let Λ = {𝐴1, 𝐴2, … , 𝐴𝑚+1} be any 
minimum resolving partition of 𝐾𝑚,𝑚. 
Note that 𝑢𝑖  and 𝑢𝑗  are twin vertices with 

respect to the partition Λ. Therefore, 𝑢𝑖  
and 𝑢𝑗  belong to distinct partition class of 

Λ1 for every 𝑖, 𝑗 ∈ [1,𝑚] by using Lemma 1. 
Without loss of generality, assume that 
𝑢𝑖 ∈ 𝐴𝑖 for any 𝑖 ∈ [1,𝑚]. Since |Λ| = 𝑚 +
1, there exists 𝑣𝑗 ∈ 𝑉2 such that 𝑣𝑗 ∈ 𝐴𝑚+1. 

Thus, we may assume that 𝑣1 ∈ 𝐴𝑚+1. By a 
similar reason, since 𝑑(𝑣𝑖, 𝑦) = 𝑑(𝑣𝑗 , 𝑦) 

for any 𝑦 ∈ 𝑉(𝐾𝑚,𝑚) − {𝑣𝑖 , 𝑣𝑗}, assume 

that 𝑣𝑗 ∈ 𝐴𝑗−1 for all 𝑗 ∈ [2,𝑚]. Therefore, 

𝑢𝑚 and 𝑣1 are 1 −distance vertices. 
 
From now on, let 𝐺 = 𝑡𝐾𝑚,𝑛 where 

𝑡 ≥ 1 and 𝑚 ≥ 𝑛 ≥ 2. Let the set of 
vertices and edges of 𝐺 be 
𝑉(𝐺) = {𝑢𝑖,𝑗, 𝑣𝑖,𝑘: 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤ 𝑚,

1 ≤ 𝑘 ≤ 𝑛},    
𝐸(𝐺) = {𝑢𝑖,𝑗𝑣𝑖,𝑘: 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤ 𝑚,

1 ≤ 𝑘 ≤ 𝑛}. 
and each component 𝑖𝑡ℎ of 𝐺 has two 
partite sets 𝑉𝑖1 and 𝑉𝑖2 with cardinality 𝑚 
and 𝑛, respectively. 
 

In the following result, we give the 
necessary condition for the graph 𝐺 =
𝑡𝐾𝑚,𝑛 where 𝑚 ≥ 𝑛 ≥ 2 such that 𝑝𝑑𝑑(𝐺) 
is finite. 

 
Theorem 3. For integer 𝑡 ≥ 1 and 

𝑚 ≥ 𝑛 ≥ 2, if 𝑝𝑑𝑑(𝑡𝐾𝑚,𝑛) < ∞, then 𝑡 ≤
(𝑚+𝑛)!

𝑚!𝑛!
 for 𝑚 > 𝑛, or 𝑡 ≤

(2𝑚)!

2𝑚!2
 for 𝑚 = 𝑛.   

 
Proof. let 𝐺 = 𝑡𝐾𝑚,𝑛 with 𝑡 ≥ 1 and 

𝑚 ≥ 𝑛 ≥ 2. If 𝑝𝑑𝑑(𝑡𝐾𝑚,𝑛) < ∞, then to 

maximize the value of 𝑡, assume that 
𝑝𝑑𝑑(𝐺)  = 𝑚 + 𝑛. Now let Λ = {𝐴1,  𝐴2,
… , 𝐴𝑚+𝑛}  be a resolving partition of 𝐺. 
Since |Λ| = 𝑚 + 𝑛 = |𝑉(𝐺)|, every vertex 
in each component of 𝐺 is the singleton 
vertex in 𝐴𝑘 for all 𝑘 ∈ [1,𝑚 + 𝑛]. Thus for 

𝑚 > 𝑛, we have there are at most (
𝑚 + 𝑛
𝑚

) 

different ways to distribute the vertices of 
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each component 𝐺 into Λ. Moreover, for 
any two vertices 𝑢, 𝑣 ∈ 𝐴𝑝 in which 𝑢 ∈ 𝑉1𝑖 

and 𝑣 ∈ 𝑉2𝑗 there exists at least one 𝑞 ∈

[1,𝑚 + 𝑛] − {𝑝} satisfying 𝑑(𝑢, 𝐴𝑞) = 1 ≠

2 = 𝑑(𝑣, 𝐴𝑞). 

Furthermore, for 𝑚 = 𝑛, let 𝑆𝑖𝑗 =

{𝑠: 𝑥 ∈ 𝑉𝑖𝑗 contained in 𝐴𝑠} where 1 ≤ 𝑖 ≤

𝑡 and 1 ≤ 𝑗 ≤ 2. Thus, for (
2𝑚
𝑚
) ways to 

distribute the vertices of each component 
of 𝐺 into Λ, there exists 𝑖 ≠ 𝑘 such that 
𝑆𝑖1 = 𝑆𝑘2 and 𝑆𝑖2 = 𝑆𝑘1. This implies that 
the representations of vertices in the 𝑖th 
component are equal to the 
representations of vertices in 𝑘th 

component of 𝐺. Therefore, 𝑡 ≤
(2𝑚)!

2𝑚!2
 for 

𝑚 = 𝑛. 
 
In the next results, we give the 

characterization of the graph 𝐺 =
𝑡𝐾𝑚,𝑛 with 𝑚 ≥ 𝑛 ≥ 2 such that the 
partition dimension 𝐺 is either 𝑚 or 𝑚+
1. 

 
Theorem 3. For integer 𝑡 ≥ 1 and 

𝑚 ≥ 𝑛 ≥ 2, then 
 

𝑝𝑑𝑑(𝐺) = 

{
 
 
 
 

 
 
 
 𝑚,

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑚 > 𝑛          

𝑎𝑛𝑑 𝑡 ≤ ⌊
𝑚

𝑛
⌋,                           

𝑚 + 1,

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 (𝑚 > 𝑛 𝑎𝑛𝑑

⌊
𝑚

𝑛
⌋ + 1 ≤ 𝑡 ≤ 𝑚 + 1) 𝑜𝑟 

(𝑚 = 𝑛 𝑎𝑛𝑑  𝑡 ≤ ⌊
𝑚 + 1

2
⌋) .

 

 

Proof. For 𝑡 ≥ 1, let 𝐺 = 𝑡𝐾𝑚,𝑛 where 
𝑚 ≥ 𝑛 ≥ 2. Note that 𝑝𝑑𝑑(𝐺) ≥ 𝑚 by 
Theorems 1 and 2. Now, we distinguish the 
following cases. 

Case 1. 𝑚 > 𝑛 and 𝑡 ≤ ⌊
𝑚

𝑛
⌋. We will 

show that 𝑝𝑑𝑑(𝐺) ≤ 𝑚. Define a partition 
Λ1 = {𝐴1, 𝐴2, … , 𝐴𝑚} of 𝐺 induced by the 
function 𝑓: 𝑉(𝐺) → {1, 2, … ,𝑚} as follows. 

 

𝑓(𝑢𝑖,𝑗) = 𝑗, for any 𝑖 ∈ [1, 𝑡], 𝑗 ∈ [1,𝑚], 

𝑓(𝑣𝑖,𝑘) = (𝑖 − 1)𝑛 + 𝑘, for any 𝑖 ∈
[1, 𝑡], 𝑘 ∈ [1, 𝑛]. 

 
Note that 𝑓(𝑥) = 𝑖 means that 𝑥 ∈

𝐴𝑖 . Let us show that Λ1 is a resolving 
partition of 𝐺. We consider any two 
distinct vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) in 𝐴𝑝 for some 

𝑝 ∈ [1,𝑚]. If 𝑥 = 𝑢𝑖,𝑗 and 𝑦 = 𝑢𝑘,𝑗  for a 

distinct 𝑖, 𝑘 ∈ [1, 𝑡] and 𝑗 ∈ [1,𝑚], then 

𝑑(𝑥, 𝐴𝑞) = 1 ≠ 2 = 𝑑(𝑦, 𝐴𝑞) for some 𝑞 ∈

 [(𝑖 − 1)𝑛 +  1, 𝑖𝑛]. If 𝑥 = 𝑢𝑖,𝑗 and 𝑦 =

𝑣𝑘,𝑙 for some 𝑖, 𝑘 ∈ [1, 𝑡], 𝑗 ∈ [1,𝑚], and 𝑙 ∈
[1, 𝑛], then 𝑗 = (𝑘 − 1)𝑛 + 𝑙 and 

𝑑(𝑥, 𝐴𝑞) = 2 ≠ 1 = 𝑑(𝑦, 𝐴𝑞) for some 𝑞 ∈

([1,𝑚] − [(𝑖 − 1)𝑛 + 1, 𝑖𝑛]). Therefore, 
𝑟(𝑥|Λ1) ≠ 𝑟(𝑦|Λ1) for any two vertices 
𝑥, 𝑦 ∈ 𝑉(𝐺) and so that Λ1 is a resolving 
partition of 𝐺. 

Now we will prove the reverse 
direction. For 𝑚 ≥ 𝑛 ≥ 2 and 𝑡 ≥ 1, let 
𝐺 = 𝑡𝐾𝑚,𝑛 and 𝑝𝑑𝑑(𝐺) = 𝑚 . By Theorem 
1, then we obtain that 𝑚 >  𝑛. 
Furthermore, any component of 𝐺 has at 
least 𝑛 vertices as 1 −distance vertex for 
any 𝑚 −resolving partition of 𝐺, by 

Lemma 1. This implies that 𝑡 ≤ ⌊
𝑚

𝑛
⌋. 

 

Case 2. 𝑚 > 𝑛 and ⌊
𝑚

𝑛
⌋ + 1 ≤ 𝑡 ≤

𝑚 + 1. We will show that 𝑝𝑑𝑑(𝐺) = 𝑚 +
1. By considering Case 1, then 𝑝𝑑𝑑(𝐺) ≥
 𝑚 + 1. To show the upper bound, let Λ2 =
{𝐴1, 𝐴2, … , 𝐴𝑚+1} be a partition of 𝐺 
induced by the function 𝑔: 𝑉(𝐺) → {1,
2, … ,𝑚 + 1}, as follows. 

 
 
 

𝑔(𝑥) = 
 

{
𝑖 + 𝑗 mod (𝑚 + 1),          𝑖𝑓 𝑥 = 𝑢𝑖,𝑗,

𝑖 + 𝑘 − 1 mod (𝑚 + 1), 𝑖𝑓 𝑥 = 𝑣𝑖,𝑘,
 

 
where 𝑖 ∈ [1, 𝑡], 𝑗 ∈ [1,𝑚], and 𝑘 ∈ [1, 𝑛]. 
Note that 𝑔(𝑥) = 0 means that 𝑥 ∈
𝐴𝑚+1 and 𝑔(𝑥) = 𝑖 means that 𝑥 ∈ 𝐴𝑖  for 
some 𝑖 ∈ [1,𝑚]. Consider any two distinct 
vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) in 𝐴𝑝 for some 𝑝 ∈

[1,𝑚 + 1]. If 𝑥 = 𝑢𝑖,𝑗 and 𝑦 = 𝑢𝑘,𝑙 where 
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𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙, then 𝑑(𝑥, 𝐴𝑞) = 1 ≠ 2 =

𝑑(𝑦, 𝐴𝑞) for some 𝑞 ∈ [1,𝑚 + 1]  −

 [𝑖 mod (𝑚 + 1), 𝑖 + 𝑛 − 1 mod (𝑚 + 1)]. 

If 𝑥 = 𝑢𝑖,𝑗 and 𝑦 = 𝑣𝑘,𝑙, then 𝑑(𝑥, 𝐴𝑞) =

1 ≠ 2 = 𝑑(𝑦, 𝐴𝑞) for some 𝑞 ∈ [𝑖 + 1, 𝑖 +

𝑚 mod (𝑚 + 1)]). Hence for any two 
vertices 𝑥, 𝑦 ∈ 𝑉(𝐺), we obtain that 
𝑟(𝑥|Λ2) ≠ 𝑟(𝑦|Λ2) and so that Λ2 is a 
resolving partition of 𝐺. 

 
To show the reverse direction, let 

𝑝𝑑𝑑(𝑡𝐾𝑚,𝑛) = 𝑚, where 𝑚 > 𝑛 ≥ 2 and 
𝑡 ≥ 1. By considering Case 1, then 𝑡 ≥

⌊
𝑚

𝑛
⌋ + 1. Furthermore, any component of 

𝑡𝐾𝑚,𝑛 has exactly one 1 −distance vertex 
for any (𝑚 + 1) −resolving partition of 𝐺, 
by Lemma 1. Thus, we can conclude that 
𝑡 ≤ 𝑚 + 1. 

 

Case 3. 𝑚 = 𝑛 and 𝑡 ≤ ⌊
𝑚+1

2
⌋. By 

Theorems 1 and 2, then 𝑝𝑑𝑑(𝐺) ≥ 𝑚 + 1. 
Let Λ3 = {𝐴1, 𝐴2, … , 𝐴𝑚+1} be a partition of 
𝐺 induced by the function ℎ: 𝑉(𝐺) → {1,
2, … ,𝑚 + 1} as follows. 

 
 ℎ(𝑥) = 

{

2𝑖 − 1,                                 𝑖𝑓 𝑥 = 𝑢𝑖,1,           

2𝑖,                                         𝑖𝑓 𝑥 = 𝑣𝑖,1,           

2𝑖 + 𝑗 − 1 mod (𝑚 + 1), 𝑖𝑓 𝑥 ∈ {𝑢𝑖,𝑗 , 𝑣𝑖,𝑗},

 

 
where 𝑖 ∈ [1, 𝑡] and 𝑗 ∈ [2,𝑚]. Note that 
ℎ(𝑥) = 0 means that 𝑥 ∈ 𝐴𝑚+1 and 
ℎ(𝑥) = 𝑖 means that 𝑥 ∈ 𝐴𝑖  for some 𝑖 ∈
[1,𝑚]. We consider any two distinct 
vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) in 𝐴𝑝 for some 𝑝 ∈

[1,𝑚 + 1]. If 𝑥 ∈ {𝑢𝑖,1, 𝑣𝑖,1} and 𝑦 ∈
{𝑢𝑗,𝑘, 𝑣𝑗,𝑘} for some 𝑘 ∈ [2,𝑚],  then 

𝑑(𝑥, 𝐴𝑞) = 1 ≠ 2 = 𝑑(𝑦, 𝐴𝑞) for some 𝑞 ∈

{2𝑖 − 1,2𝑖}. If (𝑥 = 𝑢𝑖,𝑗 and 𝑦 = 𝑢𝑎,𝑏),

𝑜𝑟  (𝑥 = 𝑣𝑖,𝑗 and 𝑦 = 𝑣𝑎,𝑏) for some 𝑗, 𝑏 ∈

[2,𝑚], then 𝑑(𝑥, 𝐴𝑞) = 2 ≠ 1 = 𝑑(𝑦, 𝐴𝑞) 

for 𝑞 = 2𝑖 − 1 or 𝑞 = 2𝑖, respectively. If 
𝑥 = 𝑢𝑖,𝑗 and 𝑦 = 𝑣𝑎,𝑏 for some 𝑗, 𝑏 ∈
[2,𝑚], then 𝑑(𝑥, 𝐴2𝑖−1) = 2 ≠ 1 =
𝑑(𝑦, 𝐴2𝑖−1). This implies that 𝑟(𝑥|Λ3) ≠
𝑟(𝑦|Λ3) for any two vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) 

and so that Λ3 is a resolving (𝑚 +
1) −partition of 𝐺. 

To show the reverse direction, let 
𝑝𝑑𝑑(𝑡𝐾𝑚,𝑛) = 𝑚 + 1, where 𝑚, 𝑛 ≥ 2 and 

𝑡 ≥ 1. By considering Case 2, then 𝑚 = 𝑛. 
Note that for each component of 𝑡𝐾𝑚,𝑛, 
there are exactly two 1 −distance vertices 
for any resolving (𝑚 + 1) −partition of 𝐺 
by Lemma 2. Therefore, we can conclude 

that 𝑡 ≤ ⌊
𝑚+1

2
⌋. 

 

CONCLUSIONS AND SUGGESTIONS 

Based on the results above, we can 
conclude that if the partition dimension of 

𝑡𝐾𝑚,𝑛 is finite, then 𝑡 ≤
(𝑚+𝑛)!

𝑚!𝑛!
 for 𝑚 > 𝑛 ≥

2, or 𝑡 ≤
(2𝑚)!

2𝑚!2
  for 𝑚 = 𝑛 ≥ 2. Further-

more, we conclude from the result in 
Theorem 3 that the partition dimension of 
𝑡𝐾𝑚,𝑛 is equal to 𝑚 if and only if 𝑚 > 𝑛 ≥

2 and 𝑡 ≤ ⌊
𝑚

𝑛
⌋, and the partition dimension 

of 𝑡𝐾𝑚,𝑛 is equal to 𝑚 + 1 if and only if 

(𝑚 > 𝑛 ≥ 2 and ⌊
𝑚

𝑛
⌋ + 1 ≤ 𝑡 ≤ 𝑚 + 1) or 

(𝑚 = 𝑛 and 𝑡 ≤ ⌊
𝑚+1

2
⌋).  

 
There are some open problems 

related to this topic, namely to determine 
the partition dimension of disjoint union 
of complete bipartite graph 𝑡𝐾𝑚,𝑛 for other 
𝑡 defined in Theorem 3. Moreover, we can 
also study the partition dimension of 
disjoint union of complete bipartite graph 
with different order, namely 𝐺 =
⋃ 𝐾𝑚,𝑛𝑖
𝑡
𝑖=1  where 𝑛𝑖 ≠ 𝑛𝑗  for some 𝑖, 𝑗 ∈

[1, 𝑡]. 
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