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 This research aimed to find out the formulation of inheritance to 
know the genotype of the n-th generation in trihybrid crosses with 
controlled parent genotypes and analyze them by applying the 
diagonalization of a matrix. Matrix diagonalization makes it easier 
to find out the inheritance genotype of the n-th generation in 
trihybrid to obtain superior offspring compared with crossing it one 
by one, which requires a lot of time and cost. Based on the analysis, 
an equation for the probability of inheritance was obtained for 27 
genotypes of the n-th generation, and the resulting offspring in an 
infinite generation are likely to have the TTKKBB genotype. 
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INTRODUCTION 

A matrix is a rectangular array of 
numbers. The numbers in the array are 
called the entries of the matrix (Anton et 
al., 2019). The application of several 
concepts from linear algebra, especially 
values and eigenvectors, and matrix 
diagonalization in genetics has been 
widely discussed (Wijayanti, 1997; Yuliani 
& Mashuri, 2012). The matrix can be met 
in a branch of linear algebra that has a very 
important role in its implementation 
(Sadhukhan et al., 2022) for the genetic 
similarity matrix constructed with 
Jaccard’s coefficient using RAPD (Random 
Amplified Polymorphic DNA). 

Diagonalization is the process of forming a 
diagonal matrix that involves the 
eigenvalue and eigenvector of the matrix. 
Searching for eigenvalues and 
eigenvectors could be a way of using linear 
algebra that could be used to determine 
the genotype of offspring for the next 
generation (Syafwan & Nurwati, 2015). 
The principles of investigations of genetic 
code systems from the viewpoint of matrix 
approaches were published in Petoukhov 
(2011b, 2011a, 2012). Petoukhov & 
Petukhova (2016) and Petoukhov (2017) 
studied the systems of structured 
alphabets of DNA and RNA in matrix forms 
of their representations. Paniello (2021) 
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introduced the concept of in-evolutionary 
operator ergodicity defined on coalgebras 
with genetic realization. This concept 
provides new insights into the 
correspondence between genetic 
coalgebra and cubic stochastic matrices, 
the in-evolution operator emerging as a 
Markov process defined by the matrix 
accompanying coalgebra cubic stochastic 
matrices. 

A square matrix 𝐴𝑛×𝑛 can be said to 
be diagonalizable if there is matrix  𝑃 
which has an inverse such that  

𝐷 = 𝑃−1𝐴𝑃 (1) 

is a diagonal matrix. Matrix 𝑃 is called the 
matrix that diagonalizes matrix 𝐴 (Anton 
et al., 2019). The application of 
diagonalization to the matrix can solve 
problems in biology, especially genetics, 
and make it easier to predict genotype 
inheritance from generation to 
generation. 

Genetics is a branch of biology that 
studies the inheritance from one 
generation to the next generation. For 
example, Gregor Mendel, the father of 
genetics, studied inheritance by 
conducting a cross-experiment on peas to 
determine the genotype distribution of 
certain traits in a population (Kumari et 
al., 2018). 

In genetics, a cross-term is carried 
out to combine the traits of two 
individuals so that new offspring with 
better quality are produced. One problem 
in crossing processes is the determination 
of different properties that require a 
relatively long processing time if done 
conventionally (without computer tools). 
In other words, a computer program 
package is required to find individuals 
who are superior to generations via 
accurate and precise crossing processes.  

In the previous research, Kaffah & 
Romdhini (2015) used the diagonalization 
of the matrix method to determine the nth 
individual based on the parent genotype 
probability, and obtained equation 

𝑥𝑛 = 𝐴𝑛𝑥0 (2) 

so that the genotype probability of an 
individual in the nth generation can be 
determined when the limit 𝑛  goes to 
infinity. This research also applied 
diagonalization of the matrix to obtain a 
solution to the probability equation for the 
inheritance of normal parental genotypes 
with all possible trihybrid genotypes.  

METHOD  

Theoretically, a trihybrid cross will 
get 23 or 8 gametes and 43 or 64 cross 
combinations (Sobir & Syukur, 2015). To 
solve the probability equation for the 
inheritance of normal parental genotypes 
with all possible trihybrid genotypes, this 
research focus on a diagonalization matrix 
procedure. The following are the steps 
required in the procedure.  

Consider a square matrix 𝐴𝑛×𝑛 . The 
steps in diagonalizing a matrix can be done 
as follows (Anton et al., 2019): 
1. Determine the eigenvalues from the 

matrix 𝐴 
2. Define 𝑛 linearly independent 

eigenvectors, 𝑝1, 𝑝2, … 𝑝𝑛 based on 
eigenvalue in step 1. 

3. Matrix form 𝑃 where the column 
vectors are vectors 𝑝1, 𝑝2, … 𝑝𝑛. 

4. Find matrix 𝑃−1  based on the 
following formula 

𝐷 = 𝑃−1𝐴𝑃
= 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛) 

   (3) 

 with 𝜆𝑖, 𝑖 = 1,2, … , 𝑛 is characteristic 
roots from matrix 𝐴. 

5. Define the gene symbol in the form of 
a variable. 

6. Conduct a cross-test of three 
different traits. 

7. Identify the form of linear equations 
based on the probability table, so 
that obtained a linear equation 
system in form matrix 𝐴. 

8. Looking for eigenvalues from matrix 
𝐴  and eigenvectors corresponding 
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with the eigenvalues. 
9. Forming matrix  𝑃 and determining 

inverse matrix 𝑃. 
10. Forming a diagonal matrix using the 

formula in Equation (3). 
11. Determine the offspring in the nth 

generation. 
12. Analyzing results and drawing a 

conclusion. 
For fast computing, all calculations 

in this research used Wolfram 
Mathematica programming (see 
https://www.wolfram.com/mathematica
/online/ for the online version).  

RESULTS AND DISCUSSION 

Determination of Genotypic 
Distribution 

The genotypic of both parents used 
in this research is a combination of three 
traits symbolized by TTKKBB 
(homozygote dominant) and ttkkbb 
(heterozygote recessive) (see Table 1). In 
Table 1, a pair of three different traits have 
been marked. The cross produced 64 
genotypes, which will appear to consist of 
27 different genotypes. 

Table 1. A Cross of a Pair of Three Different Traits 

 TKB TKb TkB Tkb tKB tKb tkB tkb 
TKB TTKKBB TTKKBb TTKkBB TTKkBb TtKKBB TtKKBb TtKkBB TtKkBb 
TKb  TTKKbb  TTKkbb  TtKKbb  TtKkbb 
TkB   TTkkBB TTkkBb   TtkkBB TtkkBb 
Tkb    TTkkbb    Ttkkbb 
tKB     ttKKbb ttKKBb ttKkBB ttKkBb 
tKb      ttKKbb  ttKkbb 
tkB       ttkkBB ttkkBb 
tkb        ttkkbb 

 

A cross between parents TTKKBB 
and TTKKBB has a full genotype 
probability value of TTKKBB. The 
probability of genotypes from normal 

crosses of TTKKBB with all possible 
genotypes available is shown in Table 2. 
 

 

Table 2. Probability of Genotypes from Normal Crosses of TTKKBB with All Possible 
Genotypes Available 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑎
 𝑛

-1
 

𝑏
𝑛

-1
 

𝑐 𝑛
−

1
 

𝑑
𝑛

−
1

 

𝑒
𝑛

−
1

 

𝑓
𝑛

−
1

 

𝑔
𝑛

−
1

 

ℎ
𝑛

−
1

 

𝑖 𝑛
−

1
 

𝑗 𝑛
−

1
 

𝑘
𝑛

−
1

 

𝑙 𝑛
−

1
 

𝑚
𝑛

−
1

 

𝑛
𝑛

−
1

 

𝑎𝑛 = TTKKBB 1 1/2 1/2 1/4 1/2 1/4 1/4 1/8 0 0 0 0 0 0 
𝑏𝑛 = TTKKBb 0 1/2 0 1/4 0 1/4 0 1/8 1 1/2 1/2 1/4 0 0 
𝑐𝑛 = TTKkBB 0 0 1/2 1/4 0 0 1/4 1/8 0 0 0 0 1 1/2 
𝑑𝑛 = TTKkBb 0 0 0 1/4 0 0 0 1/8 0 1/2 0 1/4 0 1/2 

𝑛 = TtKKBB 0 0 0 0 1/2 1/4 1/4 1/8 0 0 0 0 0 0 
𝑓𝑛 = TtKKBb 0 0 0 0 0 1/4 0 1/8 0 0 1/2 1/4 0 0 
𝑔𝑛 = TtKkBB 0 0 0 0 0 0 1/4 1/8 0 0 0 0 0 0 
ℎ𝑛 = TtKkBb 0 0 0 0 0 0 0 1/8 0 0 0 1/4 0 0 

 

 

 

 

https://www.wolfram.com/mathematica/online/
https://www.wolfram.com/mathematica/online/
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Table 2. Probability of Genotypes from Normal Crosses of TTKKBB with All Possible 
Genotypes Available (continue) 

 

15 16 17 18 19 20 21 22 23 24 25 26 27 

𝑜
𝑛

−
1

 

𝑝
𝑛

−
1

 

𝑞
𝑛

−
1

 

𝑟
𝑛

−
1

 

𝑠 𝑛
−

1
 

 

𝑡 𝑛
−

1
 

𝑢
𝑛

−
1

 

𝑣
𝑛

−
1

 

𝑤
𝑛

−
1

 

𝑥
𝑛

−
1

 

𝑦
𝑛

−
1

 

𝑧
𝑛

−
1

 

𝛼
𝑛

−
1

 

𝑎𝑛 = TTKKBB 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑏𝑛 = TTKKBb 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑐𝑛 = TTKkBB 1/2 1/4 0 0 0 0 0 0 0 0 0 0 0 

𝑑𝑛 = TTKkBb 0 1/4 1 1/2 0 0 0 0 0 0 0 0 0 

𝑒𝑛 = TtKKBB 0 0 0 0 1 1/2 1/2 1/4 0 0 0 0 0 

𝑓𝑛 = TtKKBb 0 0 0 0 0 1/2 0 1/4 1 1/2 0 0 0 

𝑔𝑛 = TtKkBB 1/2 1/4 0 0 0 0 1/2 1/4 0 0 1 1/2 0 

ℎ𝑛 = TtKkBb 0 1/4 0 1/2 0 0 0 1/4 0 1/2 0 1/2 1 

 
Identify a Form of Linear Equation 

A linear equation is formed based on 
the probability value obtained from 
crossing a normal parent with 27 types of 
genotypes. The linear equation expresses 
the probability of 27 genotypes in the nth 
generation. Based on the existing 
probability value, it is possible to 
determine each generation's genotype 
distribution from the previous 
generation's genotype distribution using 
the equation. Where the equation state 
that all the offspring produced are 𝑎𝑛,
𝑏𝑛,  𝑐𝑛, 𝑑𝑛, 𝑒𝑛, 𝑓𝑛, 𝑔𝑛, ℎ𝑛, 𝑖𝑛, 𝑗𝑛, 𝑘𝑛, 𝑙𝑛,
𝑚𝑛, 𝑛𝑛, 𝑜𝑛, 𝑝𝑛, 𝑞𝑛, 𝑟𝑛, 𝑠𝑛, 𝑡𝑛, 𝑢𝑛, 𝑣𝑛,
𝑤𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛  , 𝛼𝑛  from crosses normal 
individual TTKKBB with genotype 
individual TTKKBB, TTKKBb, TTKkBB, 
TTKkBb, TtKKBB, TtKKBb, TtKkBB, 
TtKkBb, TTKKbb, TTKkbb, TtKKbb, 
TtKkbb, TTkkBB, TTkkBb, TtkkBB, TtkkBb, 
TTkkbb, Ttkkbb, ttKKBB, ttKKBb, ttKkBB, 
ttKkBb, ttKKbb, ttKkbb, ttkkBB, ttkkBb, 
and ttkkbb listed in order with 𝑎𝑛−1,
𝑏𝑛−1,  𝑐𝑛−1, 𝑑𝑛−1, 𝑒𝑛−1, 𝑓𝑛−1, 𝑔𝑛−1, ℎ𝑛−1,
𝑖𝑛−1, 𝑗𝑛−1, 𝑘𝑛−1, 𝑙𝑛−1, 𝑚𝑛−1, 𝑛𝑛−1, 𝑜𝑛−1,
𝑝𝑛−1, 𝑞𝑛−1, 𝑟𝑛−1, 𝑠𝑛−1, 𝑡𝑛−1, 𝑢𝑛−1, 𝑣𝑛−1,
𝑤𝑛−1, 𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1  , and 𝛼𝑛−1. 

The probability of the initial 
genotype  (𝑛 = 0) are 𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑓0, 𝑔0, 
ℎ0 , 𝑖0, 𝑗0, 𝑘0, 𝑙0, 𝑚0, 𝑛0 , 𝑜0, 𝑝0, 𝑞0, 𝑟0, 𝑠0, 𝑡0, 
𝑢0 , 𝑣0 , 𝑤0 , 𝑥0 , 𝑦0 , 𝑧0 , and 𝛼0 . In addition, 

for 𝑛 = 1, 2, … , 𝑁 , the following 
relationship applies. 

 
𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛 + 𝑒𝑛 + 𝑓𝑛 +
𝑔𝑛 + ℎ𝑛 + 𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 + 𝑙𝑛 +
𝑚𝑛 + 𝑛𝑛 + 𝑜𝑛 + 𝑝𝑛 + 𝑞𝑛 +
𝑟𝑛 + 𝑠𝑛 + 𝑡𝑛 + 𝑢𝑛 + 𝑣𝑛 + 𝑤𝑛 +
𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 + 𝛼𝑛 = 1  

(4) 

 
where 

𝑎𝑛 = 𝑎𝑛−1 +
1

2
𝑏𝑛−1 +

1

2
𝑐𝑛−1 +

1

4
𝑑𝑛−1 +

           
1

2
𝑒𝑛−1 +

1

4
𝑓𝑛−1 +

1

4
𝑔𝑛−1 +

1

8
ℎ𝑛−1  

𝑏𝑛 =
1

 2
𝑏𝑛−1 +

1

4
𝑑𝑛−1 +

1

4
𝑓𝑛−1 +

1

4
𝑔𝑛−1 +

           
1

8
ℎ𝑛−1 + 𝑖𝑛−1 +

1

2
𝑗𝑛−1 +

1

2
𝑘𝑛−1 +

           
1

4
𝑙𝑛−1  

𝑐𝑛 =  
1

2
𝑐𝑛−1 +

1

4
𝑑𝑛−1 +

1

8
ℎ𝑛−1 + 𝑚𝑛−1 +

           
1

2
𝑛𝑛−1 +

1

2
𝑜𝑛−1 +

1

4
𝑝𝑛−1  

𝑑𝑛 =
1

4
𝑑𝑛−1 +

1

8
ℎ𝑛−1 +

1

2
𝑗𝑛−1 +

1

2
𝑘𝑛−1 +

           
1

4
𝑙𝑛−1 +

1

2
𝑛𝑛−1 +

1

4
𝑝𝑛−1 + 𝑞𝑛−1 +

           
1

2
𝑟𝑛−1  

𝑒𝑛  =
1

2
𝑒𝑛−1 +

1

4
𝑓𝑛−1 +

1

4
𝑔𝑛−1 +

1

8
ℎ𝑛−1 +

           𝑠𝑛−1 +
1

2
𝑡𝑛−1 +

1

2
𝑢𝑛−1 +

1

4
𝑣𝑛−1  

𝑓𝑛  =
1

4
𝑓𝑛−1 +

1

8
ℎ𝑛−1 +

1

4
𝑙𝑛−1 +

1

2
𝑡𝑛−1 +

           
1

4
𝑣𝑛−1 + 𝑤𝑛−1 +

1

2
𝑥𝑛−1  

𝑔𝑛 =
1

4
𝑔𝑛−1 +

1

8
ℎ𝑛−1 +

1

2
𝑜𝑛−1 +

1

4
𝑝𝑛−1 +

           
1

2
𝑢𝑛−1 +

1

4
𝑣𝑛−1 + 𝑦𝑛−1 +

1

2
𝑧𝑛−1  
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ℎ𝑛 =
1

8
ℎ𝑛−1 +

1

4
𝑙𝑛−1 +

1

4
𝑝𝑛−1 +

1

2
𝑟𝑛−1 +

           
1

4
𝑣𝑛−1 +

1

2
𝑥𝑛−1 +

1

2
𝑧𝑛−1 + 𝛼𝑛−1  

𝑖𝑛 = 𝑗𝑛 = 𝑘𝑛 = 𝑙𝑛 = 𝑚𝑛 = 𝑛𝑛 = 𝑜𝑛 =
𝑝𝑛 = 𝑞𝑛 = 𝑟𝑛 = 𝑠𝑛 = 𝑡𝑛 = 𝑢𝑛 = 𝑣𝑛 =
𝑤𝑛 = 𝑥𝑛 = 𝑦𝑛 = 𝑧𝑛 = 𝛼𝑛 = 0.  
 

In Equation (4), the equation with a 
value of 0 will not have a genotype in this 
breeding program. Equation (4) could be 
written in matrix form as: 

𝑥𝑛 = 𝐴𝑥𝑛−1 ∀𝑛 ∈ 𝑁 (5) 

In Equation (5), 𝑥𝑛  represents the 
distribution of offspring for the nth 
generation and can be rewritten as follow. 

𝑥𝑛 =  
[𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛 𝑒𝑛  𝑓𝑛 𝑔𝑛 ℎ𝑛  
   𝑖𝑛 𝑗𝑛 𝑘𝑛 𝑙𝑛 𝑚𝑛

𝑛𝑛 𝑜𝑛 𝑝𝑛  
   𝑞𝑛 𝑟𝑛 𝑠𝑛 𝑡𝑛 𝑢𝑛

𝑣𝑛 𝑤𝑛 𝑥𝑛  
   𝑦𝑛  𝑧𝑛 𝛼𝑛]𝑇 

 

(6) 

Similar to Equation (6), the form 
𝑥𝑛−1  can be expressed in the following 
form. 

𝑥𝑛−1 =
[𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1 𝑑𝑛−1 𝑒𝑛−1  
                 𝑓𝑛−1 𝑔𝑛−1 ℎ𝑛−1   𝑖𝑛−1 𝑗𝑛−1  
                 𝑘𝑛−1 𝑙𝑛−1 𝑚𝑛−1

𝑛𝑛−1 𝑜𝑛−1  
                 𝑝𝑛−1  𝑞𝑛−1 𝑟𝑛−1  𝑠𝑛−1 𝑡𝑛−1  
                 𝑢𝑛−1 𝑣𝑛−1 𝑤𝑛−1

𝑥𝑛−1 𝑦𝑛−1  
                 𝑧𝑛−1 𝛼𝑛−1]𝑇 

(7) 

 
In Equation (5), the genotype 

distribution of the parents is expressed 
below: 

𝐴 = [𝑎𝑖𝑗];  𝑖, 𝑗 = 1,2, … ,27. (8) 

The results of the elaboration 
carried out on the genotype distribution of 
the parents in Equation (8) obtained 
several possibilities, as follows:   

• 𝑎𝑖𝑗    = 1  

for {𝑖, 𝑗} = { {(1), (1)},
{(2), (8)},       
{(3), (13)}, {(4), (17)},  

{(5), (19)}, {(6), (23)},  
{(7), (25)}, {(8), (27)} };  

• 𝑎𝑖𝑗    =
1

2
     

for {𝑖, 𝑗} = { {(1), (2,3,5)},    
{(2), (1,10,11)}, {(3), (3,14,15)},  
{(4), (10,14,18)}, {(5), (5,20,21)},              
{(6), (11,20,24)} , 
{(7), (15,21,26)},      
{(8), (18,24,26)} };  

• 𝑎𝑖𝑗    =
1

4
   

for {𝑖, 𝑗} = { {(1), (4,6,7)},  
{(1), (4,6,7)}, {(2), (4,6,7,12)}, 
{(3), (4,16)}, {(4), (4,12,16)},  
{(5), (6,7,22)}, {(6), (6,12,22)},  
{(7), (7,16,22)}, {(8), (12,16,22)};.  

• 𝑎𝑖𝑗    =
1

8
  

for {𝑖, 𝑗} = {(1, … ,8), (8)};  
• 𝑎𝑖𝑗    = 0  

for the values of i and j other than 
those stated above. 

Eigenvalues and Eigenvectors Matrix 𝑨 

In this section, the computational 
results of the eigenvalues and 
eigenvectors concerning matrix A given in 
the previous section will be shown. 

Consider the genotype distribution 
of the parents in Equation (8). The 
eigenvalues of matrix A in Equation (8) 
are:  

{𝜆𝑖} = {1,
1

2
,

1

2
,

1

2
,

1

4
, 

1

4
, 

1

4
, 

1

8
, 0,0,0,0 

              0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}  
where 𝑖 = 1,2, … ,27.  

(9) 

Let a matrix  P where the columns 
are eigenvectors corresponding to the 
eigenvalues in Equation (9) as written in a 
matrix form below.  

𝑃 = [𝑝𝑖𝑗];  𝑖, 𝑗 = 1,2, … ,27. (10) 

The matrix P in Equation (10) is the 
result of the diagonalization of matrix A 
from Equation (3) .  The results of the 
elaboration carried out on the genotype 
distribution of the parents in Equation 
(10) yielded the following possibilities:  
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• 𝑝𝑖𝑗    = 1 

for  {𝑖, 𝑗} =
{ {(1), (1,5,6,7,9,17,23,27)},  
 {(2), (4,8,16,22)},  
 {(3), (3,8,15,26)},  
 {(4), (7,14)},  
 {(5), (2,8,21,25)},  
 {(6), (6,20)},  
 {(7), (5,24)},  
 {(8), (8)},     
 {(9, … ,27), (27, … ,9)}.  

• 𝑝𝑖𝑗    = −1 

for {𝑖, 𝑗} = { 
{(1), (2,3,4,8,11,13,19)},  
{(2), (6,7,10)}, {(3), (5,7,12)},  
{(4), (8)}, {(5), (5,6,18)}, 
{(6,7), (8)} }.  

• 𝑝𝑖𝑗    = 2  

for {𝑖, 𝑗} = { {(2), (13,19)},  
{(3), (11,19)}, {(4), (10,12)},  
{(5), (11,13)}, {(6), (10,18)},           
{(7), (12,18)} }.  

• 𝑝𝑖𝑗    = −2 

for {𝑖, 𝑗} = { {(2), (9,27)},     
{(3), (9,23)}, {(4), (22,26)}, 
{(5), (9,17)}, {(6), (16,25)}, 
{(7), (15,21)}, {(8), (14,20,24)} }.  

• 𝑝𝑖𝑗    = 4 

for {𝑖, 𝑗} = {(4,6,7), (9)}. 
• 𝑝𝑖𝑗    = −4  

for {𝑖, 𝑗} = { {(4), (19)}, {(6), (13)},  
{(7), (11)}, {(8), (10,12,18)} }. 

• 𝑝𝑖𝑗    = −8  

for {𝑖, 𝑗} = {(8), (9)}. 
• 𝑝𝑖𝑗    = 0  

for the values of i and j other than 
those stated above. 

 
Such that matrix  𝑃−1  is obtained, 

which is the inverse of matrix 𝑃. 

𝑃−1 = [𝑏𝑖𝑗];  𝑖, 𝑗 = 1,2, … ,27. (11) 

The results of the elaboration 
carried out on 𝑃−1  in Equation (11) 
yielded the following possibilities:  

• 𝑏𝑖𝑗    = 1 

for {𝑖, 𝑗} = { {(1), (1, … ,27)}, 

{(2), (5,6,7,8,11,12,15,16,18)},  
{(5), (7,8,12)},       
{(3), (3,4,7,8,10,12,21,22,24)},  
{(6), (6,8,16)},  
{(4), (2,4,6,8,14,16,20,22,26)},  
{(7), (4,8,22)}, {(8), (8)},  
{(9, … ,27), (27, … ,9)} }. 

• 𝑏𝑖𝑗    = 2 

for {𝑖, 𝑗} = {(2), (19, … ,27)},  
{(3), (13, … ,18,25,26,27)}, 
{(4), (9, … ,12,17,18,23,24,27)},
{(5), (15,16,18,21,22,24)},  
{(6), (11,12,18,20,22,26)},  
{(7), (10,12,14,16,24,26)},      
{(8), (12,16,22)} }. 

• 𝑏𝑖𝑗    = 4 

for {𝑖, 𝑗} = {(5), (25, … ,27)},         
{(6), (23,24,27)},  
{(7), (17,18,27)},         
{(8), (12,16,22)}.  

• 𝑏𝑖𝑗    = 8 

for {𝑖, 𝑗} = {(8), (27)}. 
• 𝑏𝑖𝑗    = 0  

for the values of i and j other than 
those stated above. 
 

The results obtained concerning the 
values of 𝑎𝑖𝑗 , 𝑝𝑖𝑗, and 𝑏𝑖𝑗 for all {i,j} can be 

constructed diagonal matrix D as given in 
equation (1). 
 
Diagonalization Matrix 𝑨 

Consider a linear equation that 
expresses the probability of 27 genotypes 
in the nth generation in equation (5). Using 
the results of Equation (10) and Equation 
(11), Equation (5) can be calculated 
numerically using the following formula:  

𝑥𝑛 = 𝐴𝑛𝑥(0) =  𝑃𝐷𝑛𝑃−1𝑥(0); (12) 
where 𝑛 = 1,2, … , 𝑁. 

The factor on the right side of 
Equation (12) can be expressed in the 
following form: 

𝑥𝑛 =
 𝑃𝐷𝑛𝑃−1[𝑎0 𝑏0 𝑐0  𝑑0 𝑒0 𝑓0  

       𝑔0 ℎ0 𝑖0 𝑗0 𝑘0 𝑙0  

(13) 
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      𝑚0 𝑛0 𝑜0 𝑝0 𝑞0 𝑟0  
        𝑠0 𝑡0 𝑢0 𝑣0 𝑤0 𝑥0 

 𝑦0 𝑧0 𝛼0]  
 

Using the numerical results of 
Equation (8) and Equation (9), the 
probability of 27 genotypes in the nth 
generation in Equation (13) can be 
calculated in the following way:  

𝑎𝑛 =  𝑎0 + (1 − (
1

2
)

𝑛

) 𝑏0 + (1 −

           (
1

2
)

𝑛

) 𝑐0 + (1 − 2 (
1

2
)

𝑛

+ (
1

4
)

𝑛

) 𝑑0  +

           (1 − (
1

2
)

𝑛

) 𝑒0 + (1 − 2 (
1

2
)

𝑛

+

           (
1

4
)

𝑛

) 𝑓0 + (1 − 2 (
1

2
)

𝑛

+ (
1

4
)

𝑛

) 𝑔0 +

           (1 − 3 (
1

2
)

𝑛

+ 3 (
1

4
)

𝑛

− (
1

8
)

𝑛

) ℎ0 +

           (1 − (
1

2
)

𝑛

) 𝑖0 + (1 + 2 (
1

2
)

2𝑛

−

           2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑗0 + (1 + 2 (

1

2
)

2𝑛

−

           2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑘0 + (1 − 2 (

1

2
)

3𝑛 

+

           4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

+ (
1

4
)

𝑛
) 𝑙0 +

           (1 − 2 (
1

2
)

𝑛

) 𝑚0 + (1 + 2 (
1

2
)

2𝑛

−

            2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑛0 + (1 + 2 (

1

2
)

2𝑛

−

            2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑜0 + (1 − 2 (

1

2
)

3𝑛

+

            4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

+ (
1

4
)

𝑛
) 𝑝0 +

           (1 − 4 (
1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑞0 + (1 −

           4 (
1

2
)

3𝑛

+ 4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

− (
1

2
)

𝑛

+

          4 (
1

4
)

𝑛
) 𝑟0 + (1 − 2 (

1

2
)

𝑛

) 𝑠0 +

          (1 + 2 (
1

2
)

2𝑛

− 2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑡0 +

          (1 + 2 (
1

2
)

2𝑛

− 2 (
1

2
)

𝑛

− (
1

2
)

𝑛
) 𝑢0 +

          (1 − 2 (
1

2
)

3𝑛

+ 4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

+

          (
1

4
)

𝑛
) 𝑣0 + (1 − 4 (

1

2
)

𝑛

−

          4 (
1

4
)

𝑛

) 𝑤0 + (1 − 4 (
1

2
)

3𝑛

+

          4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

− (
1

2
)

𝑛

+

          4 (
1

4
)

𝑛
) 𝑥0 + (1 − 4 (

1

2
)

𝑛

−

          4 (
1

4
)

𝑛

) 𝑦0 + (1 − 4 (
1

2
)

3𝑛

+

          4 (
1

2
)

2𝑛

− 4 (
1

2
)

𝑛

− (
1

2
)

𝑛

+

          4 (
1

4
)

𝑛
) 𝑧0 + (1 − 6 (

1

2
)

𝑛

+ 12 (
1

4
)

𝑛

−

          8 (
1

8
)

𝑛

) 𝛼0  

𝑏𝑛 = ((
1

2
)

𝑛

) 𝑏0 + ((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑑0 +

((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑓0 + ((
1

2
)

𝑛

−

2 (
1

2
)

2𝑛

− (
1

8
)

𝑛
) ℎ0 + (2 (

1

2
)

𝑛

) 𝑖0 +

(2 (
1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑗0 + (2 (

1

2
)

𝑛

−

2 (
1

2
)

2𝑛
) 𝑘0 + (2 (

1

2
)

3𝑛

− 4 (
1

2
)

2𝑛

+

2 (
1

2
)

𝑛
) 𝑙0 + ((

1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑛0 +

(2 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ (
1

2
)

𝑛

−

(
1

4
)

𝑛
) 𝑝0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑞0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑟0 + ((

1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑡0 +

(2 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ (
1

2
)

𝑛

−

(
1

4
)

𝑛
) 𝑣0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑤0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑥0 + (4 (

1

2
)

3𝑛

− 4 (
1

2
)

2𝑛

+

(
1

2
)

𝑛
) 𝑧0 + (2 (

1

2
)

𝑛

− 8 (
1

2
)

2𝑛

+

8 (
1

2
)

𝑛
) 𝛼0  

𝑐𝑛 = ((
1

2
)

𝑛

) 𝑐0 + ((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑑0 +

((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑔0 + ((
1

2
)

𝑛

−

2 (
1

2
)

2𝑛

− (
1

8
)

𝑛
) ℎ0 + ((

1

2
)

𝑛

−

2 (
1

2
)

2𝑛
) 𝑗0 + (2 (

1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+

(
1

2
)

𝑛

− (
1

4
)

𝑛
) 𝑙0 + (2 (

1

2
)

𝑛

) 𝑚0 +

(2 (
1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑛0 + ((

1

2
)

𝑛

−
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2 (
1

2
)

2𝑛
) 𝑜0 + (2 (

1

2
)

3𝑛

− 4 (
1

2
)

2𝑛

+

2 (
1

2
)

𝑛
) 𝑝0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑞0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑟0 + ((

1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑢0 +

(2 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ (
1

2
)

𝑛

−

(
1

4
)

𝑛
) 𝑣0 + (4 (

1

2
)

3𝑛

− 4 (
1

2
)

2𝑛

+

(
1

2
)

𝑛
) 𝑥0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑦0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑧0 + (2 (

1

2
)

𝑛

− 8 (
1

2
)

2𝑛

+

8 (
1

2
)

𝑛
) 𝛼0  

𝑑𝑛 = ((
1

4
)

𝑛

) 𝑑0 + ((
1

4
)

𝑛

− (
1

8
)

𝑛

) ℎ0 +

(2 (
1

2
)

2𝑛
) 𝑗0 + (2 (

1

2
)

2𝑛

−

2 (
1

2
)

3𝑛
) 𝑙0 + (2 (

1

2
)

2𝑛
) 𝑛0 +

(2 (
1

2
)

2𝑛

− 2 (
1

2
)

3𝑛
) 𝑝0 +

(4 (
1

4
)

𝑛

) 𝑞0 + (4 (
1

4
)

𝑛

−

2 (
1

2
)

3𝑛
) 𝑟0 + ((

1

4
)

𝑛

− 2 (
1

2
)

3𝑛
) 𝑣0 +

(2 (
1

2
)

2𝑛

− 4 (
1

2
)

3𝑛
) 𝑥0 + (2 (

1

2
)

2𝑛

−

4 (
1

2
)

3𝑛
) 𝑧0 + (4 (

1

4
)

𝑛

− 8 (
1

8
)

𝑛

) 𝛼0  

𝑒𝑛 = ((
1

2
)

𝑛

) 𝑒0 + ((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑓0 +

((
1

2
)

𝑛

− (
1

4
)

𝑛

) 𝑔0 + ((
1

2
)

𝑛

−

2 (
1

2
)

2𝑛

− (
1

8
)

𝑛
) ℎ0 + ((

1

2
)

𝑛

−

2 (
1

2
)

2𝑛
) 𝑘0 + (2 (

1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+

(
1

2
)

𝑛

− (
1

4
)

𝑛
) 𝑙0 + ((

1

2
)

𝑛

−

2 (
1

2
)

2𝑛
) 𝑜0 + (2 (

1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+

(
1

2
)

𝑛

− (
1

4
)

𝑛
) 𝑝0 + (4 (

1

2
)

3𝑛

−

4 (
1

2
)

2𝑛

+ (
1

2
)

𝑛
) 𝑟0 + (2 (

1

2
)

𝑛

) 𝑠0 +

(2 (
1

2
)

𝑛

− 2 (
1

2
)

2𝑛
) 𝑡0 + (2 (

1

2
)

𝑛

−

2 (
1

2
)

2𝑛
) 𝑢0 + (2 (

1

2
)

3𝑛

− 4 (
1

2
)

2𝑛

−

2 (
1

2
)

𝑛
) 𝑣0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑤0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑥0 + (2 (

1

2
)

𝑛

− 4 (
1

4
)

𝑛

) 𝑦0 +

(4 (
1

2
)

3𝑛

− 2 (
1

2
)

2𝑛

+ 2 (
1

2
)

𝑛

−

4 (
1

4
)

𝑛
) 𝑧0 + (2 (

1

2
)

𝑛

− 8 (
1

2
)

2𝑛

+

8 (
1

2
)

𝑛
) 𝛼0  

𝑓𝑛 =  ((
1

4
)

𝑛

) 𝑓0 + ((
1

4
)

𝑛

− (
1

8
)

𝑛

) ℎ0 +

(2 (
1

2
)

2𝑛
) 𝑘0 + (2 (

1

2
)

2𝑛

−

2 (
1

2
)

3𝑛
) 𝑙0 + ((

1

4
)

𝑛

− 2 (
1

2
)

3𝑛
) 𝑝0 +

(2 (
1

2
)

2𝑛

− 4 (
1

2
)

3𝑛
) 𝑟0 +

(2 (
1

2
)

2𝑛
) 𝑡0 + (2 (

1

2
)

2𝑛

−

2 (
1

2
)

3𝑛
) 𝑣0 + (4 (

1

4
)

𝑛

) 𝑤0 +

(4 (
1

4
)

2𝑛

− 4 (
1

2
)

3𝑛
) 𝑥0 + (2 (

1

2
)

2𝑛

−

4 (
1

2
)

3𝑛
) 𝑧0 + (4 (

1

4
)

𝑛

− 8 (
1

8
)

𝑛

) 𝛼0  

𝑔𝑛 = ((
1

4
)

𝑛

) 𝑔0 + ((
1

4
)

𝑛

− (
1

8
)

𝑛

) ℎ0 +

((
1

4
)

𝑛

− 2 (
1

2
)

3𝑛
) 𝑙0 + (2 (

1

2
)

2𝑛
) 𝑜0 +

(2 (
1

2
)

2𝑛

− 2 (
1

2
)

3𝑛
) 𝑝0 + (2 (

1

2
)

2𝑛

−

4 (
1

2
)

3𝑛
) 𝑟0 + (2 (

1

2
)

2𝑛
) 𝑢0 +

(2 (
1

2
)

2𝑛

− 2 (
1

2
)

3𝑛
) 𝑣0 + (2 (

1

2
)

2𝑛

−

4 (
1

2
)

3𝑛
) 𝑥0 + (4 (

1

4
)

𝑛

) 𝑦0 +

(4 (
1

4
)

𝑛

− 4 (
1

2
)

3𝑛
) 𝑧0 + (4 (

1

4
)

𝑛

−

8 (
1

8
)

𝑛

) 𝛼0  

ℎ𝑛 = ((
1

8
)

𝑛

) ℎ0 + (2 (
1

2
)

3𝑛
) 𝑙0 +

(2 (
1

2
)

3𝑛
) 𝑝0 + (4 (

1

2
)

3𝑛
) 𝑟0 +

(2 (
1

2
)

3𝑛
) 𝑣0 + (4 (

1

2
)

3𝑛
) 𝑥0 +

(4 (
1

2
)

3𝑛
) 𝑧0 + (8 (

1

8
)

𝑛

) 𝛼0. 
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𝑖𝑛 = 𝑗𝑛 = 𝑘𝑛 = 𝑙𝑛 = 𝑚𝑛 = 𝑛𝑛 = 𝑜𝑛 =
𝑝𝑛 = 𝑞𝑛 = 𝑟𝑛 = 𝑠𝑛 = 𝑡𝑛 = 𝑢𝑛 = 𝑣𝑛 =
𝑤𝑛 = 𝑥𝑛 = 𝑦𝑛 = 𝑧𝑛 = 𝛼𝑛 = 0   
for 𝑛 = 1, 2, 3, … . 
The Result of Genotype Inheritance 
Analysis 

In section 3.4, the probability of 27 
genotypes in the nth generation in 
Equation (13) has been calculated, and xn 
is obtained which involves three 
particular forms of the sequence. In matrix 

𝑥(𝑛) , there are (
1

2
)

𝑛

, (
1

4
)

𝑛

, and (
1

8
)

𝑛

, 

which tend of approach 0 to 𝑛 towards 
infinity, so the concept of limit is used 
from 𝑛 to infinity to know the sum of the 
parts of the genotypes that exist in infinite 
generations. The limit of Equation (13) is: 

 

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

{ 𝑎0 + (1 − (
1

2
)

𝑛

) 𝑏0 + ⋯ +

(1 − 6 (
1

2
)

𝑛

+ 12 (
1

4
)

𝑛

−

8 (
1

8
)

𝑛

) 𝛼0} 

               = 𝑎0 + 𝑏0 + 𝑐0 + 𝑑0 + ⋯ + 𝑦0 +
  𝑧0 + 𝛼0  

lim
𝑛→∞

𝑏𝑛 = lim
𝑛→∞

{ ((
1

2
)

𝑛

) 𝑏0 + ⋯ + (2 (
1

2
)

𝑛

−

8 (
1

2
)

2𝑛

+ 8 (
1

2
)

𝑛
) 𝛼0} = 0  

lim
𝑛→∞

𝑐𝑛 = lim
𝑛→∞

{ ((
1

2
)

𝑛

) 𝑐0 + ⋯ + (2 (
1

2
)

𝑛

−

8 (
1

2
)

2𝑛

+ 8 (
1

2
)

𝑛
) 𝛼0} = 0  

lim
𝑛→∞

𝑑𝑛 = lim
𝑛→∞

{ ((
1

4
)

𝑛

) 𝑑0 + ((
1

4
)

𝑛

−

(
1

8
)

𝑛

) ℎ0 + ⋯ + (4 (
1

4
)

𝑛

−

8 (
1

8
)

𝑛

) 𝛼0} = 0  

lim
𝑛→∞

𝑒𝑛 = lim
𝑛→∞

{ ((
1

2
)

𝑛

) 𝑒0 + ⋯ + (2 (
1

2
)

𝑛

−

8 (
1

2
)

2𝑛

+ 8 (
1

2
)

𝑛
) 𝛼0} = 0  

lim
𝑛→∞

𝑓𝑛 = lim
𝑛→∞

{ ((
1

4
)

𝑛

) 𝑓0 + ((
1

4
)

𝑛

−

(
1

8
)

𝑛

) ℎ0 + ⋯ + (4 (
1

4
)

𝑛

−

8 (
1

8
)

𝑛

) 𝛼0} = 0  

lim
𝑛→∞

𝑔𝑛 = lim
𝑛→∞

{ ((
1

4
)

𝑛

) 𝑔0 + ((
1

4
)

𝑛

−

(
1

8
)

𝑛

) ℎ0 + ⋯ + (4 (
1

4
)

𝑛

−

8 (
1

8
)

𝑛

) 𝛼0} = 0  

lim
𝑛→∞

ℎ𝑛 = lim
𝑛→∞

{ ((
1

8
)

𝑛

) ℎ0 + (2 (
1

2
)

3𝑛
) 𝑙0 +

⋯ + (8 (
1

8
)

𝑛

) 𝛼0} = 0  

lim
𝑛→∞

𝑖𝑛 = lim
𝑛→∞

𝑗𝑛 = lim
𝑛→∞

𝑘𝑛 = ⋯ =

lim
𝑛→∞

𝛼𝑛 = lim
𝑛→∞

0 = 0  

 
Based on the Equation (1) then for 

𝑎0 + 𝑏0 + 𝑐0 + ⋯ + 𝑧0 + 𝛼0 = 1 
 
the probability of genotype for infinite 
offspring is: 
𝑎𝑛 = 𝑎0 + 𝑏0 + 𝑐0 + ⋯ + 𝑧0 + 𝛼0 = 1  
𝑏𝑛 = 𝑐𝑛 = 𝑑𝑛 = 𝑒𝑛 = 𝑓𝑛 = 𝑔𝑛 = ℎ𝑛  
= 𝑖𝑛 = 𝑗𝑛 = 𝑘𝑛 = 𝑙𝑛 = 𝑚𝑛 = 𝑛𝑛 = 𝑜𝑛  
= 𝑝𝑛 = 𝑞𝑛 = 𝑟𝑛 = 𝑠𝑛 = 𝑡𝑛 = 𝑢𝑛 = 𝑣𝑛  
= 𝑤𝑛 = 𝑥𝑛 = 𝑦𝑛 = 𝑧𝑛 = 𝛼𝑛 = 0  
 

Parents cross BbLL with all possible 
genotypes of the dihybrid, resulting in the 
genotype probability for its infinite 
offspring, that are (Kaffah & Romdhini, 
2015): 

𝑎𝑛 =
1

4
  

𝑑𝑛 =
1

2
  

𝑔𝑛 =
1

4
  

𝑏𝑛 = 𝑐𝑛 = 𝑒𝑛 = 𝑓𝑛 = ℎ𝑛 = 0  
 

In this research, all the emerging 
individuals had a relatively good chance of 
passing on their seed traits to their infinite 
offspring. Meanwhile, in this research, the 
chances of offspring are not fully 
genotyped TTKKBB, and eight genotypes 
have a chance of breeding. 

CONCLUSIONS AND SUGGESTIONS 

Based on the result of this research, 
it can be concluded that the genotype of 
the nth generation in trihybrid crosses 
with controlled parental genotypes could 
be obtained from the equation obtained by 
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applying the diagonalization of a matrix. 
Furthermore, in infinite generation for the 
nth generation controlled genotype 
inheritance can be used to calculate the 
limit n to infinity, and obtained all 
offspring that will be produced tend to 
have a genotype TTKKBB. 

As for the suggestion for this 
research, in the genotype inheritance 
research, using matrix diagonalization 
could be developed for crosses with more 
traits. 
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