

Contents lists available at DJM DESIMAL: JURNAL MATEMATIKA <u>p-ISSN: 2613-9073</u> (print), <u>e-ISSN: 2613-9081</u> (online), <u>DOI 10.24042/djm</u> http://ejournal.radenintan.ac.id/index.php/desimal/index

Expansion \widetilde{gis} -closed & its lower separation axioms

Omar Yusuf Khattabomar

University of Mosul, Iraq

ARTICLE INFO

Article History

 Received
 : 03-02-2023

 Revised
 : 21-04-2023

 Accepted
 : 29-04-2023

 Published
 : 30-04-2023

Keywords:

gis- closed sets; gis - continuous mapping; gis -open mapping; gis -hoeomorphisim; gis separations axioms.

*Correspondence: E-mail: <u>khattab2b1@gmail.com</u>

Doi: 10.24042/djm.v6i1.15875

ABSTRACT

In this paper, we introduced a new classification of generalized closed sets that are called ultra-generalized s-closed sets named simply \tilde{gis} closed sets, and we show the relationship between this new type with other open, and generalized closed sets. We also investigate advanced \tilde{gis} - continuous mappings and some of its properties. Furthermore, we discussed some lower \tilde{gis} -seperation axioms.

http://ejournal.radenintan.ac.id/index.php/desimal/index

INTRODUCTION

Contains Introduction many open, closed generalized closed sets will not stop at certain limit, because we live in infinite evaluation. So many researchers gave us their vision in creation or existence their open and closed sets; they also introduced the applications to those sets. By the way our simple working in this paper aim to create new types of closed set sets that are called gis-closed set and we present expansion of *gis*-continuous mapping. Furthermore, we show the investigation properties of these mappings. In section 2, we define gis-open set, and we appear the relationship with some types of generalized closed and open sets. In section 3, we present the notion of gis-continuous mapping, gis-open mapping, \tilde{gis} -irresolute mapping, and \tilde{gis} homeomorphism mapping, and we investigate the relationship between the new type of generalized mapping with some types of continuous mappings, the relationship between is-open mapping, with some types of open mappings and the relationship between *is*-irresolute mappings with some types of irresolute mappings. Further, we compare \widehat{gis} -homeomorphism with other kind of homeomorphisms. Further, we study some of their basic properties.

METHOD

Our needed in this paper to suggest renaming the topology spaces to (X, τ) , and (Y, σ) by τ_o and σ_o respectively. We following denoted the notations, characterizations, and definitions. The closure (resp. interior) of a subset B of a topological space τ_o is called by CL(B)(resp.Int(B)), and the complementation of *B* is represented by \overline{B} .

Definition 1.1 A subset *B* of a topological space τ_o is said to be (i) Semi-open set (Levine, 1959) (resp. α -open set (Njastad, 1965), regular-open set (Levine, 1970), i α -open set (Mohammed & kahtab, 2012), and is-open set (Y. khattab, 2022)) , if $B \subseteq Cl(Int(B))$ (resp. $B \subseteq Int(Cl(B))$, B = int(cl(B)), $B \subseteq Cl(B \cap O)$, where $\exists O \in \alpha O(X)$, $O \neq X, \emptyset$, and $B \subseteq Cl(B \cap O)$, where $\exists O \neq \emptyset, O \subseteq SO(X)$.

The family of all open (resp. semi-open, α open, regular open, i α -open, and is-open) sets of a topological space is denoted by $\hat{\tau}$, (resp. τ_s , τ_{α} , τ_r , $\tau_{i\alpha}$, and $\tau_{i\bar{s}}$). The complementation of open (resp. α -open, semi-open, regular-open, i α -open, and $i\bar{s}$ open) sets of a topological space X is called closed (resp. α -closed, semi-closed, regular-closed, i α closed, $i\bar{s}$ -closed) sets. The closure of the above sets is denoted by *Cl* (resp. Cl_{α} , Cl_{s} , Cl_r , and $Cl_{i\alpha}$, and $Cl_{i\bar{s}}$).

Definition 1.2 Let $B \subseteq \tau_o$, *B* is said to be

(i) Generalized closed set (simply, gclosed (Maki et al., 1993)), if $cl(B) \subseteq 0$, whenever $B \subseteq 0$ and $0 \subset \tau_0$.

(ii) Semi-generalized closed (simply, sgclosed) (Bhattacharya & Lahiri, 1987), if $cl(B) \subseteq 0$, whenever $B \subseteq 0$ and $0 \subset \tau_s$. (iii) Generalized semi-closed (simply, gsclosed) (Arya & Nour, 1990), if $Cl_{s,}(B) \subseteq O$ whenever $B \subseteq O$ and $O \subset \tau$;

(iv) Generalized α -closed (simply, $g\alpha$ closed) (Maki et al., 1993), if $Cl_{\alpha}(B) \subseteq 0$ whenever $B \subseteq 0$ and $0 \subset \tau_{\alpha}$;

(v) α -generalized closed (simply, αg closed) (Maki et al., 1994), if $Cl_{\alpha}(B) \subseteq O$ whenever $B \subseteq O$ and $O \subset \tau$;

(i) Regular generalized closed (simply, *r*g-closed) (Njastad, 1965), if $Cl(B) \subseteq O$ whenever $B \subseteq O$ and $O \subset \tau_r$.

(ii) Generalized *a* regular-closed set (simply, $g\alpha r$ -closed) (Sekar & Kumar, 2016), if $Cl_{\alpha}(B) \subseteq 0$ whenever $B \subseteq 0$ and $0 \subset \tau_s$

Definition 1.3 The mapping $f: \tau_o \rightarrow \sigma_0$ we called:

(i) g-continuous (resp. sg-continuous, $g\alpha$ -continuous, $i\alpha$ -continuous, r-g-continuous, and is-continuous) if the inverse image of every open subset of σ_o is g-open (resp. semi g-open, $g\alpha$ -open, $i\alpha$ -open, r-g-open, and is-open) set in τ_o (Cao et al., 2002; Darwesh & Hassan, 2015; Devi et al., 1997; Mohammed & kahtab, 2012; Rani & Balachandran, 1997; Y. khattab, 2022).

(ii) α -irresolute (resp. r-g-irresolute, sgirresolute, and is-irresolute)if the inverse image of every α -open (resp. r-g-open, sgopen, and is-open) subset of σ_o is an α open(resp. r-g- open, sg-open, and isopen) subset in τ_o (Maheswari & Prasad, 1978; Rani & Balachandran, 1997; Sundaram et al., 1991; Y. khattab, 2022).

(iii) regular open (resp. rg-open, i α -open, and is-open) if image of each open set of τ_o is regular –open(resp. rg-open, i α open, and is-open) in σ_o (Mohammed & kahtab, 2012; Sekar & Kumar, 2016; Stone, 1937; Y. khattab, 2022).

Definition 1.4 The mapping $f: \tau_o \rightarrow \sigma_0$ is said to be :

(i) g-homeomorphism (resp. gchomeomorphism, $i\alpha$ - homeomorphism, and is- homeomorphism) if f is gcontinuous and g-open (resp. f and f^{-1} are g-irresolute, if f is an $i\alpha$ continuous and open, and f is an iscontinuous and open mappings) (Maki et al., 1991, 1994; Mohammed & kahtab, 2012; Y. khattab, 2022).

Definition 1.5 Let (X, τ_o) topology space, (X, τ_o) then is defined to be:

(i) \overline{is} - T_o (Y. khattab, 2022) if $\forall n \neq m \in X$, $\exists B \subseteq \tau_{\overline{is}}$, s.t $n \in B \land m \notin B$.

(ii) \overline{is} - T_1 (Y. khattab, 2022) if $\forall n \neq m \in X$, $\exists B \land C \subseteq \tau_{\overline{is}}$, s.t $n \in B \land m \notin B, m \in C \land n \notin C$.

(iii) \overline{is} - T_2 (Y. khattab, 2022) $\forall n \neq m \in X$, $\exists B \neq C \subseteq \tau_{\overline{is}}$, s.t $n \in B$, $\land m \in C$.

(iv) \overline{is} -regular [10] if $\forall n \notin \lambda \subseteq \overline{\tau_o}, \exists B \neq C \subseteq \overline{\tau_{is}}, \text{ s.t } n \in B \land \lambda \subseteq C.$

(v) \overline{is} -normal (resp. ultra-normal, snormal, α -normal) $\forall B \neq C \subseteq \overline{\tau_0}, B \subseteq M \subseteq$ $\tau_{\overline{is}}(resp.\tau_s, \tau_{\alpha}, \tau_r) \neq C \subseteq N \subseteq$ $\tau_{\overline{is}}(resp.\tau_s, \tau_{\alpha}, \tau_r)$ (Arhangel'skii & Ludwig, 2001; Maheswari & Prasad, 1978; Staum, 1974; Y. khattab, 2022).

(vi) $\overline{is} - T_{1/2}$ (Y. khattab, 2022) if $\overline{\tau_{\overline{is}}} = \overline{\tau_{\overline{i}}}$.

RESULTS AND DISCUSSION

gis-Closed (Open) Sets & Its Applications

Definition 2.1 Let $B \subseteq \tau_o$, B is said to be ultra- generalized S-closed set simply (\tilde{gis} - closed), if $Cl_{\overline{is}}(B) \subseteq O$, whenever $B \subseteq O, \land O \subset \tau_{\overline{is}}$. The complementation of \tilde{gis} - closed set is \tilde{gis} - open set, then collections of \tilde{gis} -open sets are denoted by $\tau_{\overline{gis}}$.

Example 2.2 X={0,4,8}, τ ={Ø, {8},X } , $\tau_{\widehat{gis}}$ ={Ø,{0}, {4}, {8}, {0,4}, {0,8}, {4,8}, ,X}. **Lemma 2.3** If $B \subseteq \tau(resp. \tau_s, \tau_\alpha, and \tau_{i\alpha})$, then B is $\tau_{\overline{is}}$ (Y. khattab, 2022). **Lemma 2.4** Every \overline{is} -closed set is \widehat{gis} -closed sets.

Proof. Let $B \subseteq \tau_{\overline{is}}$ such that $B \subseteq U$, where U is \overline{is} - open. Since $Cl_{\overline{is}}(B) \subseteq B$. It implies $Cl_{\overline{is}}(B) \subseteq U$. Therefore, B is \widetilde{gis} -closed set in $\tau_o \blacksquare$

Theorem 2.5 Every closed set is \tilde{gis} - closed.

Proof. Let V^c is open set in a topological space τ_o . Since every open set is is-open set by Lemma 2.3, then V^c is is-open set, consequently V is is-closed set, since every is-closed set is gis-closed sets by Lemma 2.4, Therefore V is gis-closed set set

Corollary 2.6 Every semi-closed is \widehat{gis} -open.

Proof. Let N^c is semi-open set in τ_o . Since every semi-open set is \overline{is} -open by **Lemma 2.3**, hence N is \widehat{gis} -closed by **Lemma 2.4**. Therefore, N is \widehat{gis} -open

Corollary 2.7 Every α -closed is \widehat{gis} -open. **Proof.** Same the proof **Corollary 2.6** by **Lemma 2.3**, and **Lemma 2.4**

Corollary 2.8 Every $i\alpha$ -closed is \widehat{gis} -open. **Proof.** Same the proof **Corollary 2.6** by **Lemma 2.3**, and **Lemma 2.4**

Generally, the converse of above theorems and corollaries are not true as this example.

Example 2.9 X={0,2,4}, $\tau = \tau_{\alpha} = \{\emptyset, \{2,4\}, X\}, \tau_{\overline{is}} = \{\emptyset, \{4\}, \{2\}, \{2,4\}, \{0,2\}, \{0,4\}, X\}, \text{ and } \overline{is}$ - closed sets ={ $\emptyset, \{2,0\}, \{0,4\}, \{0\}, \{4\}, \{2\}, X\}$ we get $\{2,4\} \subseteq \{2,4\}, Cl_{\overline{is}}\{2,4\} \subseteq \{2,4\},$ Therefore {a} is \widehat{gis} -closed but it is not \overline{is} -closed set, semi-closed, α -closed, and closed.

Theorem 2.10 Every *g*-closed is \widehat{gis} -closed.

Proof. Let *V* is *sg*-closed in a topological τ_o , such that $Cl(V) \subseteq O$,Such that $V \boxtimes O \subseteq \tau_o$, Since every closed is an *is*-closed by **Lemma 2.3**, then $Cl_{\overline{is}}(V) \subseteq$

 $Cl(V) \subseteq O$, hence $Cl(V) \subseteq O$. Also, since every open set is an *is*-open **Lemma 2.3**, then $V \subseteq O \subseteq \tau_{is}$. Therefore, V *isg̃is*closed

Theorem 2.11 Every sg-closed set is \tilde{gis} -closed set.

Proof. Let *V* is *sg*-closed in τ_o , consequently $Cl(V) \subseteq O$, Such that $V \subseteq O \subseteq \tau_s$, Since every closed is an is-closed by **Lemma 2.3**, then we have $Cl(V) \subseteq Cl_{is}(V) \subseteq O$. Also, since every semi-open is an is-open, **Lemma 2.3**, then $V \subseteq O \subseteq \tau_{i\alpha}$. Therefore, *V* is gis-closed

Corollary 2.12 Every gs-closed is \tilde{gis} -closed.

Proof. Same the proof of above theorem ■

Theorem 2.13 Every $g\alpha$ -closed is \widehat{gis} -closed.

Proof. Let *V* is αg - closed in τ , then $Cl(V)_{\alpha} \subseteq O$, Such that $V \subseteq O \subseteq \tau_{\alpha}$, Since every α -closed is \overline{is} -closed **Lemma 2.3**, then $Cl(V)_{\alpha} \subseteq Cl_{\overline{is}} \subseteq O$, and since every α -open is an \overline{is} -open by **Lemma 2.3**, then $V \subseteq O \subseteq \tau_{\overline{is}}$. Therefore, *V* is \widetilde{gis} -closed

Corollary 2.14 αg - closed is \widehat{gis} -closed.

Proof. Same the proof of the above theorem∎

Remark 2.15 the following example show that \widehat{gis} -closed set isn't an essential to be g-closed, gs-closed, set sg-closed, α g-closed, and g α -closed set.

Example 2.16 X={i,j,k}, $\tau = \{\emptyset, \{j\}, X\}\tau_{\alpha} = \tau_s = \{\emptyset, \{j\}, \{j, i\}, \{j, k\}, X\}, \tau_{\overline{is}} = \{\emptyset, \{i\}, \{j\}, \{k\}, \{i, j\}, \{i, k\}, \{j, k\}, X\} =$

 \overline{is} - closed sets. We get $\{j,k\} \subseteq \{j,k\}$, $Cl_{\overline{is}}\{j,k\} \subseteq \{j,k\}$, Therefore $\{j,k\}$ is \widetilde{gis} closed but is not g-closed, gs-closed, set
sg-closed, αg - closed, and $g\alpha$ -closed set.

Theorem 2.17 Every rg-closed is \widehat{gis} -cloed set.

Proof. Let *V* is *rg*-closed in τ , so we have $Cl(V) \subseteq O$, Such that $V \subseteq O \subseteq \tau_r$, Since every closed is an *is*-closed by **Lemma 2.3**, then $Cl(V) \subseteq Cl_{\overline{is}} \subseteq O$, and since every regular-open is an *is*-open **Lemma**

2.3, then $V \subseteq O \subseteq \tau_{\overline{is}}$. Therefore, V is \widehat{gis} -closed

Corollary 2.18 Every α rg-closed *is* \tilde{gis} -cloed set.

Proof. Let *V* is *a* regular-closed -closed, so we have $Cl_{\alpha}(V) \subseteq 0$, Such that $V \subseteq 0 \subseteq \tau_r$, Since Every α closed is \overline{is} -closed **Lemma 2.3**, then $Cl_{\alpha}(V) \subseteq Cl_{\overline{is}} \subseteq 0$, and since every regular -open is an \overline{is} -open **Lemma 2.3**, then $V \subseteq O \subseteq \tau_{\overline{is}}$. Therefore, *V* is \widetilde{gis} -closed

Remark 2.19 the following example show that \widehat{gis} -closed is not a necessary to be αgr -closed, rg-closed, and set αrg -closed as the following example.

Example 2.20 X={0,5,10}, $\tau = \{\emptyset, \{10\}, X\}, \tau_s = \{\emptyset, \{10\}, \{10,0\}, \{10,5\}, X\}, \tau_s = \{\emptyset, \{0\}, \{10\}, \{10,5\}, X\}, \{10,5\}, X\}, \tau_s = \{\emptyset, \{10\}, \{10\}, \{10,5\}, X\}, \tau_s = \{\emptyset, \{10\}, \{10,5\}, X\}, \tau_s = \{\emptyset, \{10\}, \{10,5\}, X\}, \tau_s = \{\emptyset, \{10\},$

 $\tau_{\overline{is}} = \{ \emptyset, \{0\}, \{5\}, \{10\}, \{10,5\}, \}$

{10,0}, {0,5}, X} = is- closed sets. We get {10,0} \subseteq {10,0}, $Cl_{i\alpha}$ {10,0} \subseteq {10,0}, Therefore {10,10} is \tilde{gis} -closed but is not αgr -closed, rg-closed, and set αrg -closed. **Theorem 2.21** If $\tau \subset \tau_s$, then $\tau_{\overline{ais}} = \tau_{\overline{is}}$

Proof. If $\tau \subset \tau_s$, it implies to $\exists N \subset \tau_s$, then $N \notin \tau$, and hence $\tau_{\overline{is}} = \text{po}(\mathbf{x})$, equivalence to all subsets of \overline{is} -closed set, since every \overline{is} -closed set is $gi\alpha$ -closed sets by **Corollary 2.4**. Therefore $\tau_{\overline{is}} = \tau_{\overline{ais}} \blacksquare$

Theorem 2.22 If *M* and *N* are \widehat{gis} -closed sets in (*X*, τ), then $M \cup N$ is \widehat{gis} -closed set in

 $(X, \tau).$

Proof. Let M and N are \widehat{gis} -closed sets in τ and U be an \overline{is} -open set containing M and N. Therefore $Cl(M) \subseteq U, Cl(N) \subseteq U$. Since $M \subseteq U, N \subseteq U$ then $M \cup N \subseteq U$. Hence $Cl(M \cup N) = Cl(M) \cup Cl(N) \subseteq U$. Therefore $M \cup N$ is \widehat{gis} -closed set in τ

Theorem 2.23 If *M* and *N* are \widehat{gis} -closed sets in(*X*, τ), then $M \cap N$ is \widehat{gis} -closed set in

Proof. Same the proof of above theorem.

Some \widetilde{gis} -Mappings & its properties

Definition 3.1 The mapping $f: \tau_o \to \sigma_0$ is \widetilde{gis} -continuous if, $\forall V \subseteq \sigma_0, f^{-1}(V) \subseteq \tau_{o_{\widetilde{gis}}}$.

Example 3.2 Let N=L= {0.1, 0.2, 0.3}, $\tau = \{\emptyset, \{0.2\}, N\}, \sigma = \{\emptyset, \{0.1\}, L\}, \widetilde{gis}(N) = \{\emptyset, \{a\}, \{d\}, \{h\}, \{a, d\}, \{a, h\}, \{d, h\}, N\}$. It is obvious; the identity mapping $f: (N, \tau) \rightarrow (L, \sigma)$ is \widetilde{gis} -continuous.

Theorem 3.3 If f is sg-continuous mapping, then f is \widehat{gis} -continuous mapping.

Prof. Let $f:\tau_o \to \sigma_0$ be sg-continuous mapping, and $N \subseteq \sigma_0(\overline{\sigma_0})$. Since, f is sgcontinuous, then $f^{-1}(V)$ is an sg-open (closed) $\subseteq \tau_0$. Since, every sg-open set is an \widetilde{gis} - open set by **Theorem 2.11**, then $f^{-1}(N) \subseteq \tau_{0 \, \widetilde{gis}}$. Therefore, f is an \widetilde{gis} continuous

Theorem 3.4 If f is $g\alpha$ -continuous mapping, then f is \widetilde{gis} -continuous mapping.

Proof. Same the proof above By **Corollary** 2.13 ■

Theorem 3.5 Every r-g-continuous mapping is gis-continuous mapping.

Proof. Same the proof of **Theorem 3.3** and by using b**Theorem 2.17**. Therefore, f is an \widehat{gis} -continuous

Theorem 3.6 Every iα-continuous mapping is gis-continuous mapping.

Proof. Same the proof of the above theorem , since every is-open set is \widehat{gis} -open by **Corollary 2.8**

Theorem 3.7 Every is-continuous mapping is gis-continuous mapping.

Proof. Same the prooof of the above **Theorem 3.5** by using **Lemma 2.4**■

 $f^{-1}(V)$ is an sg-open (closed) set in τ_0 . Since, every sg-open set is an \widetilde{gis} - open set by **Theorem 2.11**, then $f^{-1}(V) \subseteq \tau_{0 \, \widetilde{gis}}$.

Theorem 3.8 If f is $g\alpha$ -continuous mapping, then f is \widetilde{gis} -continuous mapping.

Proof. Same the proof above By **Corollary** 2.13■

Theorem 3.9 if f is r-g-continuous mapping, then f is gis-continuous mapping.

Proof. Let $f: \tau_0 \to \sigma_0$ be an r-g-continuous mapping and $N \subseteq \sigma_0$. Since, f is r-g-continuous, then $f^{-1}(V)$ is an r-g-open set in τ , hence $f^{-1}(N) \subseteq \tau_{o_{\widehat{gis}}}$ since every r-g-open set is an \widehat{gis} -open set by **Theorem 2.17**. Therefore, f is an \widehat{gis} -continuous

The converse of above theorems is not ture generally.

Example 3.10 Let H={1,3,5}, K={3,6,9}, $\tau = \{\emptyset, \{1,5\}, H\}, \sigma = \{\emptyset, \{6\}, K\}, \quad gis-(H)=\{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, H\}, is(H)=\{\emptyset, \{1\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, H\}, the map f: (H, \tau) \rightarrow (K, \sigma) is difine as:f(1) = 6, f(3) = (9), f(5) = 3.$ Here is f is gis-continuous but is not is-continuous, sg-continuous, g\alpha-continuous, and rg-continuous mappings, because $f^{-1}\{9\} = \{3\}$ is only gis-open set.

Remark 3.11 We can proof easily in the same way that continous (resp.semicontinuous, α -continuouos, regularcontinuous) mappings are \widehat{gis} -continuous mapping. **Definition 3.12** The Mapping $f: \tau_o \to \sigma_0$ is \widehat{gis} -irresolute, if $\forall V \subseteq \sigma_0_{\widetilde{gis}}, f^{-1}(V) \subseteq \tau_0_{\widetilde{gis}}$.

Example 3.13 Let $Q=W=\{s,r,t\}, \tau = \{\emptyset, \{t\}, Q\}, \sigma = \{\emptyset, \{t\}, W\}, \widetilde{gis}(Q)=\{\emptyset, \{s\}, \{r\}, \{t\}, \{s,r\}, \{s,t\}, \{r,t\}, Q\}, \widetilde{gis}(W)=\{\emptyset, \{s\}, \{r\}, \{t\}, \{s,r\}, \{s,t\}, \{r,t\}, w\}f:(Q, \tau) \to (W, \sigma)$ is difine as : f(r)=s, f(s)=t, f(t)=r. It is clear the mapping is \widetilde{gis} -irresolute mapping.

Theorem 3.14 If f is α (resp. rg, and sg)irresolute mapping, then f is \widehat{gis} irresolute mapping.

Proof. Let $f: \tau_o \to \sigma_0$, be an α (resp. rg, and sg)-irresolute, and H any α (resp. rg, and sg)-open subset of σ_0 , hence H is \widehat{gis} -open by (**Corollary2.7**, **Theorem 2.17** and **Corollary 2.11**). Since f is an α -irresolute, then $f^{-1}(H)$ is α -open in τ_o , and since every α (resp. rg, and sg) - open set is \widehat{gis} -open set. Therefore f is \widehat{gis} -irresolute mapping

Theorem 3.15 Every \widehat{gis} -irresolute is \widehat{gis} -continuous mapping.

Proof. Clear form Definition 3.12

Theorem 3.16 if $f:\tau_o \to \sigma_0$, and $g:\sigma_0 \to Z_0$, then $f \circ g:\tau_o \to Z_0$ is \widetilde{gis} -irresolute.

Proof. Let *R* is gia-open set in Z_0 , since $g: \sigma_0 \to Z_0$ is \widehat{gis} -irresolute, then $g^{-1}(R)$ is \widehat{gis} -open set $\operatorname{in} \sigma_0$, since $f: \tau_o \to \sigma_0$ is \widehat{gis} -irresolute, it imply $f^{-1}(g^{-1}(R))$ is \widehat{gis} -open set in τ_o . Therefore $f \circ g: \tau_o \to Z_0$ is \widehat{gis} -irresolute

Corollary 3.17 if $g: \sigma \to Z_0$ is \widehat{gis} – irresolute, and $f: \tau_o \to \sigma_0$ is \widehat{gis} continuous mapping, prove $f \circ g$ is \widehat{gis} irresolute. Proof. Same as the proof above Theorem
3.16■

Definition 3.18 The Mapping $f: \tau_o \to \sigma_0$ is \widetilde{gis} -open, if $\forall N \subseteq \tau_o, f(N) \subseteq \sigma_0$.

Example 3.19 Let B={5,7,9} ,C={4,6,8,}, $\tau = \{\emptyset\{9\}, \{7,9\}, B\}, \sigma = \{\emptyset, \{8\}, C\}, \widehat{gis}$ (C)= { $\emptyset, \{4\}, \{6\}, \{8\}, \{4,6\}, \{4,8\}, \{6,8\}$,C} $f: (B, \tau) \rightarrow (C, \sigma)$ is difine as: f(5)=8, f(7)=4, f(9)=6. The mapping is \widehat{gis} -open mapping.

Theorem 3.20 If f is \overline{is} -open mapping, then f is \widehat{gis} -open mapping.

Proof. Let $f: \tau_o \to \sigma_0$ is an is-open function, and A is any open in τ_o , then f(A) is an gis-open in σ , since every is-open is gis-open by **Lemma 2.4**, so f(A) is gis-open. Therefore f is gis-open

Theorem 3.21 if f rg-open mapping, then f is \widehat{gis} -open.

Proof. Same the proof the above theorem by using **Theorem 2.17**■

The converse of **Theorems 3.20, and 3.21** are not true■

Example 3.22 Let B= $\{1,2,3\},\$ $C=\{4,5,6\}, \tau = \{\emptyset, \{2\}, B\}, \ \sigma = \{\emptyset, \{4,6\}, C\},\$ gis (C)= {Ø,{4}, {6},{8}, {4,6}, {4,8},{6,8},C}. The identity mapping $f: (B, \tau) \to (C, \sigma)$ is gis-open mapping but it is not i α -open and rg-open mapping, because $f{2} = {2}$ is not \overline{is} -open and rgopen.

Theorem 3.23 If $: \tau_o \to \sigma_0$ is open mapping, and $g: \sigma_0 \to Z_0$ is \widetilde{gis} -open mapping, then the composition $f \circ g$ is \widetilde{gis} -open map.

Proof. Let $H \subset \tau_o$, snice $f: \tau_o \to \sigma_0$ is open map, then $f(H) \subset \sigma_0$, also since $g; \sigma_0 \to Z_0$

is \widehat{gis} -open map, then $g(f(H)) \subset Z_0$ is \widehat{gis} -open. Therefore $f \circ g$ is \widehat{gis} -open map

Remark 3.24

i) If f and g are \widehat{gis} -open map, then $f \circ g$ is not \widehat{gis} -open map.

ii) The proof of the above **Theorems 3.20** and **3.21**are true for \widehat{gis} -closed mapping. iii) The **Diagram 2.24** is true for \widehat{gis} -open (resp. continuous, and irresolute) mappings

Theorem 3.25 The bijection mapping $f: \tau_o \rightarrow \sigma_0$, these are equivalent statements as the following.

(i) $f^{-1}: \tau_o \to \sigma_0$ is \widetilde{gis} - continuous.

(ii) f is \widehat{gis} -open map.

(iii) f is \tilde{gis} - closed map.

Proof. (i) \Rightarrow (ii) Let $M \subset \tau_o$. Since f is \widehat{gis} -continuous mapping, $f^{-1^{-1}}(M) = f(M) \subset \sigma_{0\widehat{gis}}$. Therefore f is \widehat{gis} -open map (ii) \Rightarrow (iii) Let $N \subset \overline{\tau_o}$, then N^c is $\subset \tau_o$. Since f is \widehat{gis} -open mapping, $f(N^c) \subset \sigma_{0\widehat{gis}}$. Hence $f(N) \subset \tau_{0\widehat{gis}}$. Therefore f is \widehat{gis} -closed mapping

(iii) \Rightarrow (i) Let $\mathbb{R} \subset \tau_{o_{\widehat{gis}}}$, Since f is \widehat{gis} -closed mapping, then $f(R) \subset \overline{\sigma_0}_{\widehat{gis}}$. henever $f(R) = f^{-1}(R)$. Hence $f^{-1}: \tau_o \to \sigma_0$ is \widehat{gis} - continuous

Definition 3.26 A bijection $gi\alpha$ – continuous, and $gi\alpha$ -open mappings (resp. f and f^{-1} is gis- irresolute) is called gis-homeomorphism (resp. *gis-homeomorphism).

Theorem 3.27 If f is rg-homeomorphism, then f is \tilde{gis} -homeomorphism.

Proof. Let $f:\tau_0 \to \sigma_0$ is rghomeomorphism. Hence *f* is aiscontinuous because every gr-continuous is *gis* by **Theorem 3.9**. In addition, by using **Theorem 21**, then f gis-open Therefore f aismapping. is homeomorphism

Theorem 3.28 If f is \overline{is} -homeomorphism, hence f is \overline{gis} -homeomorphism.

Proof. Same the proof of above theorem, but by using **Theorem 3.7**, and **Theorem 3.20** ■

Remark3.29 Example 3.10 is enough to proof that the converse of **Theorem 3.27** is not always true.

 \overline{gis} -Separation axioms with its applications

Gradually this section presents some new weak of \tilde{gis} –separation axioms with theoretical result.

Definition 4.1 Let (X, τ_o) topology space, then (X, τ_o) is defined to be:

(i) $\widehat{gis} T_o$, if $\forall n \neq m \in X$, $\exists B \subseteq \tau_{\widehat{gis}}$, s.t $n \in B \land m \notin B$.

(ii) \widehat{gis} - T_1 , if $\forall n \neq m \in X$, $\exists B \land C \subseteq \tau_{\widehat{gis}}$, s.t $n \in B \land m \notin B$, $m \in C \land n \notin C$.

(iii) \widehat{gis} - T_2 , if $\forall n \neq m \in X$, $\exists B \neq C \subseteq \tau_{\widehat{gis}}$, s.t. $n \in B \land$, $m \in C$.

(iv) \widehat{gis} -regular, if $\forall n \notin \lambda \subseteq \overline{\tau_o}, \exists B \neq C \subseteq \tau_{\overline{gis}}, \text{ s.t } n \in B \land \lambda \subseteq C.$

(v) \widetilde{gis} -normal, if $\forall v \subseteq \overline{\tau_o} \neq \lambda \subseteq \overline{\tau_o}$, $\exists B \neq C \subseteq \tau_{\widetilde{gis}}$, s.t $v \subseteq B \land \lambda \subseteq C$. (vi) \overline{is} - $T_{1/2}$, if $\overline{\tau_{\overline{15}}} = \overline{\tau_1}$.

Example 4.2 $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, \alpha, X\},$ $SO(X) = \{\emptyset, \{\alpha\}, \{\beta, \alpha\}, \{\alpha, \gamma\}, X\} \subset is =$ $\widehat{gis} = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\beta, \alpha\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, X\}.$ Clearly, τ is \widehat{gis} - T_o , \widehat{gis} - T_1 , \widehat{gis} - T_2 , \widehat{gis} -regular, \widehat{gis} -normal, and \widehat{gis} - $T_{1/2}$.

Theorem 4.3 Every \overline{is} - T_o (resp. \overline{is} - T_1 , \overline{is} - T_2 , \overline{is} -regular, \overline{is} -normal, \overline{is} - $T_{1/2}$) are \widetilde{gis} - T_o (resp. \widetilde{gis} - T_1 , \widetilde{gis} - T_2 , \widetilde{gis} -regular, \widetilde{gis} -normal, \widetilde{gis} - $T_{1/2}$).

Proof. It is evident by using Lemma 2.4 ■

Theorem 4.4 X is a \widehat{gis} - $T_{1/2}$ iff $\forall x \in X$, {x} is \widehat{gis} -open or \widehat{gis} -closed in \widehat{gis} - $T_{1/2}$, i.e., X is a \widehat{gis} - $T_{1/2}$ iff a τ_o is a \widehat{gis} - $T_{1/2}$.

Proof. It obvious from **Definition** \overline{gis} - $T_{1/2}$

Theorem 4.5 if $\tau \subset \tau_s$, then τ is \widehat{gis} - $T_{1/2}$. **Proof.** Resemble the proof of **Theorem 2.21**

Theorem 4.6 if $f: \tau_o \to \sigma_0$ is injection \widehat{gis} open mapping, and τ_o is $\widehat{gis} \cdot T_{1/2}$, then σ_0 is $\widehat{gis} \cdot T_{1/2}$.

Theorem 4.7 if $f: \tau_o \to \sigma_0$ is injection \widetilde{gis} irresolute mapping, and $\sigma_0 \ \widetilde{gis} T_{1/2}$, then τ_o is $\widetilde{gis} T_{1/2}$.

Theorem 4.8 If $\tau_o = \sigma_0$ are both \widehat{gis} - $T_{1/2}$, and f is injection, then $f: \tau_o \to \sigma_0$ is:

(i) \widehat{gis} -open \Rightarrow (ii) \widehat{gis} -continuous \Rightarrow (ii) \widehat{gis} -irresolute mappings.

Proof (i). Let $G \neq Q$ are open sets in τ_o , since f is injection and $\tau_o = \sigma_0$, then $f(G) \neq f(Q)$ are open in σ_0 . Since σ_0 is \widehat{gis} - $T_{1/2}$, it implies $\sigma_0 \subset \sigma_{\widehat{gis}}$, hence $f(G) \neq f(Q)$ are \widehat{gis} -open set in σ_0 . Therefore, f is \widehat{gis} -open mapping

Proof (ii). Let $G \neq Q$ are open sets in σ_0 , since τ_o is $\widehat{gis} \cdot T_{1/2} f$ is injection $\widehat{gis} \cdot open$ mapping, then $f(G)^{-1} \neq f(Q)^{-1}$ are $\widehat{gis} \cdot open$ sets in τ_o . Therefore, f is $\widehat{gis} \cdot continuous$ mappings

Proof (iii). It is obvious by Theorem 3.15 ■

Corollary 4.9 If $\tau_o = \sigma_0$ are both \widehat{gis} - $T_{1/2}$, and f is injection, then $f:\tau_o \to \sigma_0$ is \widehat{gis} -homeomorphism.

Proof. It is obvious by Definition 3.22(i)

Corollary 4.10 If $\tau_o = \sigma_0$ are both \widehat{gis} - $T_{1/2}$, and f is injection, then $f: \tau_o \to \sigma_0$, and $f^{-1}: \tau_o \to \sigma_0$ are \widehat{gis} -irresolute mappings.

Corollary 4.11 If $\tau_o = \sigma_0$ are both \widehat{gis} - $T_{1/2}$, and f is injection, then $f:\tau_o \to \sigma_0$ is $*\widehat{gis}$ -homeomorphism.

Proof. It is obvious by definition 3.22(ii)

Theorem 4.12 If $f: \tau_o \to \sigma_0$ is injection \widetilde{gis} -irresolute, and σ_0 is \widetilde{gis} - T_o , then τ_o \widetilde{gis} - T_2 .

Proof. Suppose $g \neq q \in \tau_o$ and f be an injective, then $f(g) \neq f(q)$ in σ_0 . Since σ_0 is an \widehat{gis} - T_o , $\exists N \subseteq \tau_{\widehat{gis}}$, s.t $f(g) \in N$, \land $f(q) \notin N$, $\Rightarrow g \in f^{-1}(N) \land q \notin f^{-1}(N)$. Since, f is \widehat{gis} - irresolute, then $f^{-1}(M) \subset \tau_{\widehat{gis}}$, then $g \in f^{-1}(N) \neq q \in f^{-1}(M)$. Therefore, τ_o is \widehat{gis} - T_2

Theorem 4.13 If $f:\tau_o \to \sigma_0$ be a \widetilde{gis} continuous closed injection. If σ_0 is \widetilde{gis} normal, then τ_o is \widetilde{gis} -normal.

Proof. Let $L_1 \subseteq \tau_o \neq L_2 \subseteq \tau_o$. Since f is injective and closed, $f(L_1) \subseteq \overline{\sigma_0} \neq f(L_2) \subseteq \overline{\sigma_0}$. Since σ_0 is \widehat{gis} -normal, then $f(L_1) \neq f(L_2)$, $\exists \ O_1 \subseteq \sigma_{\widehat{gis}} \neq O_2 \subseteq \sigma_{\widehat{gis}}$, s.t $f(L_1) \subset O_1 \neq f(L_2) \subset O_2$, we obtain $L_1 \subset f^{-1}(O_1) \land L_2 \subset f^{-1}(O_2)$. Since, f is an \widehat{gis} -continuous, then $f^{-1}(V_1) \land f^{-1}(V_2) \subseteq \tau_{\widehat{gis}}$. Also, $f^{-1}(L_1) \cap f^{-1}(L_2) = f^{-1}(L_1 \cap L_2) = \emptyset$. Therefore, X is an \widehat{gis} -normal \blacksquare **Corollary 4.14** if $f: \tau_o \to \sigma_0$ be a \widetilde{gis} -irresolute closed, and injection. If σ_0 is \widetilde{gis} -normal, then τ_o is \widetilde{gis} -normal.

Proof. Since every \widehat{gis} -continuous is \widehat{gis} -irresolute mapping by **Theorem 3.11**

Corollary 4.15 If $f:\tau_o \to \sigma_0$ be a \widehat{gis} -irresolute closed injection, and σ_0 is \widehat{gis} -regular, then τ_o is \widehat{gis} -regular.

Proof. It is obvious from definition of \widehat{gis} -regular

CONCLUSIONS AND SUGGESTIONS

The new gis-closed and open set that mention in this paper investigated many properties for about the same type and the gis-mappings. We can expand about this new gis-set by related with other openclosed-generalized closed sets. We also present gis- lower separation axioms. In addition, we related this gis-separation with advanced gis-mappings to reach high-expended theorems. Finally, we do not forget the ability to create other type of generation closed and open sets by using other kinds of open and closed accompanied its applications.

REFERENCES

- Arhangel'skii, A. V., & Ludwig, L. D. (2001). On α-normal and β-normal spaces. Commentationes Mathematicae Universitatis Carolinae, 42(3), 507– 519.
- Arya, S., & Nour, T. (1990). Characterizations of s-normal spaces. Indian Journal of Pure and Applied Mathematics, 21, 717–719.
- Bhattacharya, P., & Lahiri, B. K. (1987). Semi generalized closed sets in topology. *Indian Journal of Mathematics*, 29, 373–382.

- Cao, J., Ganster, M., & Reilly, I. (2002). On generalized closed sets. *Topology and Its Applications*, *123*(1), 37–46. <u>https://doi.org/10.1016/S0166-</u> 8641(01)00167-5
- Darwesh, H. M., & Hassan, N. O. (2015). Sgcontinuity in topological spaces. *Journal of Zankoy Sulaimani - Part A*, *17*(3), 51–60. https://doi.org/10.17656/jzs.10400
- Devi, R., Balachandran, K., & Maki, H. (1997). On generalized α-continuous maps and α-generalized continuous maps. *Far East Journal of Mathematical Sciences*, 1, 1–15.
- Levine, N. (1959). Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, *70*, 36–41.
- Levine, N. (1970). Generalized closed sets in topological spaces. *Rendiconti Del Circolo Matematico Di Palermo, 19,* 89–96.
- Maheswari, S. N., & Prasad, R. (1978). On α-irresolute mappings. *Tamkang Journal of Mathematics*, 22(68), 27– 29.
- Maki, H., Devi, R., & Balachandran, K. (1993). Generalized α-closed sets in topology. *Bulletin of Fukuoka University*, 42, 13–21.
- Maki, H., Devi, R., & Balachandran, K. (1994). Associated topologies of generalized-closed sets and – generalized closed sets. *Memoir of the Faculty of Science Kochi University*, 15, 51–63.
- Maki, H., Sundaram, P., & Balachandran, K. (1991). On generalized homeomorphismsin topological spaces. *Bulletin of Fukuoka University*, 30–40.
- Mohammed, A., & kahtab, O. (2012). On i α-Open Sets. *AL-Rafidain Journal of Computer Sciences and Mathematics*, 9(2), 219–228. <u>https://doi.org/10.33899/csmj.2012</u> .163713

- Njastad, O. (1965). On some classes of nearly open sets. *Pacific Journal of Mathematics*, 961–970.
- Rani, A., & Balachandran, K. (1997). On regular generalized continuous maps in topological spaces. *Kyungpook Math*, *37*, 305–314.
- Sekar, S., & Kumar, G. (2016). On g alpha r closed set in topological spaces. International Journal of Pure and Apllied Mathematics, 108(4). https://doi.org/10.12732/ijpam.v10 8i4.5
- Staum, R. (1974). The algebra of bounded continuous functions into a nonarchimedean. *Pacific Journal of Mathematics*, *50*, 169–185.
- Stone, M. (1937). Applications of the theory of boolean rings to general topology. *Transactions of the AMS -American Mathematical Society*, 41, 374–481.
- Sundaram, P., Maki, H., & Balanchandran, K. (1991). Semi generalized continuous maps and semi-T1/2 spaces . *Bulletin of Fukuoka University*, 30–40.
- Y. khattab, O. (2022). Upper semiadvanced mappings in a topological spaces. International Journal of Mathematics Trends and Technology, 68(7), 26–33. https://doi.org/10.14445/2231537 3/IJMTT-V68I7P505