
Copyright © 2020, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

mathDesimal: JurnalMatematikaVol 3 No 3 (2020) 271-278 
 

 
 

 
Contents lists available at DJM 

DESIMAL: JURNAL MATEMATIKA 
p-ISSN: 2613-9073 (print), e-ISSN: 2613-9081 (online), DOI 10.24042/djm 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 

The Numerical Simulation for Asymptotic Normality of the 
Intensity Obtained as a Product of a Periodic Function with 
the Power Trend Function of a Nonhomogeneous Poisson 
Process 
 

Ikhsan Maulidi1,*, Mahyus Ihsan1, Vina Apriliani2  
 

1 Syiah Kuala University, Banda Aceh, Indonesia 
2 UIN Ar-Raniry, Banda Aceh, Indonesia 
 

 

ARTICLE    INFO 

  

ABSTRACT 

Article History 
Received       : 09-05-2020 
Revised         : 08-09-2020 
Accepted      : 28-09-2020 
Published     : 30-09-2020 

Keywords: 
Poisson Process, Intensity 
Function, Power Trend Function, 
Asymptotic Normality. 
 

*Correspondence: E-mail: 
ikhsanmaulidi@unsyiah.ac.id  
 
Doi: 
10.24042/djm.v3i3.6374 
 

 In this article, we provided a numerical simulation for asymptotic 
normality of a kernel type estimator for the intensity obtained as a 
product of a periodic function with the power trend function of a 
nonhomogeneous Poisson Process. The aim of this simulation is to 
observe how convergence the variance and bias of the estimator. The 
simulation shows that the larger the value of power function in 
intensity function, it is required the length of the observation interval 
to obtain the convergent of the estimator. 
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INTRODUCTION 

There are many real phenomena that 
can be modeled using stochastic 
processes. This kind of model uses 
opportunity rules that describe the 
behavior of a system that is not known in 
the future. For example, the process of 
coming customers to a service center such 
as bank, post office, supermarket, etc 
((Mahmud et al., n.d.; Sumiati et al., 2019; 
Tse, 2014)). The Poisson process is one of 
the continuous stochastic processes, 

namely the enumeration process where 
the number of events at time intervals 
spreads with the Poisson distribution. 

The Poisson process is divided into 
two, namely the homogeneous Poisson 
process and the nonhomogeneous Poisson 
process. In a homogeneous Poisson 
process, the intensity function (a function 
of expectation value) is a constant function 
(not dependent on time), whereas the 
intensity function in the nonhomogeneous 
Poisson process depends on time. Periodic 
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Poisson process is a nonhomogeneous 
Poisson process whose intensity function 
is a periodic function. This process is one 
of the special forms of stochastic 
processes with a continuous time that 
have many benefits to modeling various 
kinds of real phenomena related to 
opportunity rules. Some applications of 
this periodic Poisson process can be 
applied in the fields of communication, 
hydrology, meteorology, insurance, and 
seismology, (Sumiati et al., 2019), 

Suppose N is a nonhomogeneous 
Poisson process at interval [0, 𝑛] (𝑛 is an 
integer number) with an unknown 
function of intensity λ and assumed that 
the intensity function is locally integrated. 
It is also assumed that the function of this 
intensity is the product of the periodic 
component and the power trend 
component 𝑎𝑠𝑏 with b>0 is known, so that 
for all s∈[0,∞] the function of intensity λ 
(s) can be expressed as 

  𝜆(𝑠) = (𝜆𝑐
∗(𝑠))𝑎𝑠𝑏(1)  

with 𝜆𝑐
∗(𝑠) is a periodic function with a 

known period. The constant 𝑎 is the slope 
of the trend with 𝑎 > 0. Equation (1) can 
also be written as 

                 𝜆(𝑠) = (𝑎𝜆𝑐
∗ (𝑠))𝑠𝑏, (2) 

with𝑎𝜆𝑐
∗(𝑠)is also a periodic function. 

Suppose 𝜆𝑐(𝑠) = 𝑎𝜆𝑐
∗(𝑠), then Equation 

(2) becomes 

                 𝜆(𝑠) = (𝜆𝑐 (𝑠)) 𝑠𝑏.                    (3) 

Furthermore, because 𝜆𝑐 (𝑠) is a periodic 

function, then 𝜆𝑐 (𝑠) = 𝜆𝑐 (𝑠 + 𝑘𝜏), where 
𝜏 is the period and 𝑘 is the natural number. 
Let 𝐾: ℝ → ℝ is a real value function. The 
𝐾 function is called the kernel if it fulfills 
the properties: (K1) 𝐾 is an opportunity 
density function, (K2) 𝐾 is bounded, and 
(K3) 𝐾 has a domain in [−1,1],(Helmers et 
al., 2003). 

The proposed estimator 𝜆𝑐 (𝑠) at 𝑠 ∈
[0, 𝜏] has been studied in (Erliana et al., 
2014) by only using a single realization 
𝑁(𝜔) from a Poisson process with the 
intensity function 𝜆(𝑠) as in Equation (3) 

observed in interval [0, 𝑛]. The estimator 
is as follows: 

�̂�𝑐,𝑛,𝐾(𝑠)

=
𝜏

𝑛
∑

1

ℎ𝑛(𝑠 + 𝑘𝜏)𝑏 ∫ 𝐾 (
𝑥 − (𝑠 + 𝑘𝜏)

ℎ𝑛
)

𝑛

0

𝑁(𝑑𝑥)

∞

𝑘=0

.  (4) 

In the previous article, (Erliana et al., 
2014), also has been given the bias, 
variance, and optimal bandwidth for all 
values b. Strong consistency of the 
estimator has also been proven in(Maulidi 
et al., 2015). Other similar studies can be 
seen in (Mangku, 2011), (Erliana et al., 
2014) and (Mangku et al., 2013). 

METHOD 

This research started from the 
Theorems that analitically prove the 
normal distribution of the estimator for all 
cases of 𝒃 values.  The normality 
asymptotic of the estimator is a useful tool 
in developing a prediction model. This is 
because by knowing the asymptotic 
normality, the interval confident of the 
estimator can be obtained. Here we 
provide the theorems for the asymptotic 
normality of the estimator that has been 
formulated, Equation (4). 

Theorem 1 (Asymptotic Normality of 

�̂�𝒄,𝒏,𝑲(𝒔)for 𝟎 < 𝑏 < 1) 

Suppose that the intensity 𝜆 satisfies  
(1) and locally integrable. The kernel 
function 𝐾 satisfies (K1), (K2), (K3), 𝜆𝑐 has 
a bounded second derivative around of 
𝑠, 0 < 𝑏 < 1, 𝑛1−𝑏ℎ𝑛 → 0, 𝑛𝑏+1ℎ𝑛 →
∞,ℎ𝑛 ↓ 0 as 𝑛 → ∞, 

a) If (𝑛1+𝑏ℎ𝑛
5)

1

2 → 0, then 

(𝑛1+𝑏ℎ𝑛 )
1

2(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))
𝑑
→ Normal(0, 𝜎2) 

as 𝑛 → ∞, with 𝜎2 =
𝜏𝜆𝑐(𝑠)

(1−𝑏)
∫ 𝐾2(𝑧)𝑑𝑧.

1

−1
 

b) If (𝑛1+𝑏ℎ𝑛
5)

1

2 → 1, then 

(𝑛1+𝑏ℎ𝑛 )
1

2(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))
𝑑
→ Normal(𝜇, 𝜎2) 

as 𝑛 → ∞, with 𝜇 =
𝜆𝑐

′′(𝑠)

2
∫ 𝑧2𝐾(𝑧)𝑑𝑧

1

−1
,  
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and 𝜎2 =
𝜏𝜆𝑐(𝑠)

(1−𝑏)
∫ 𝐾2(𝑧)𝑑𝑧.

1

−1
 

Theorem 2 (Asymptotic Normality of 

�̂�𝒄,𝒏,𝑲(𝒔)for 𝒃 = 𝟏) 
Suppose that the intensity 𝜆 satisfies 

(1) and locally integrable. The kernel 
function 𝐾 satisfies (K1), (K2), (K3), 𝜆𝑐 has 
a bounded second derivative around of 

𝑠, 𝑏 = 1, ln (𝑛)ℎ𝑛 → 0,
𝑛2ℎ𝑛

𝑙𝑛(𝑛)
→ ∞, ℎ𝑛 ↓ 0 as 

𝑛 → ∞, 

a) If (
𝑛2ℎ𝑛

5

ln (𝑛)
)

1

2
→ 0, then 

(
𝑛2ℎ𝑛

ln (𝑛)
)

1

2

(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))

𝑑
→ Normal(0, 𝜎2) 

as 𝑛 → ∞, with 𝜎2 = 𝜏𝜆𝑐(𝑠) ∫ 𝐾2(𝑧)𝑑𝑧
1

−1
. 

b) If (
𝑛2ℎ𝑛

5

ln (𝑛)
)

1

2
→ 1, then 

(
𝑛2ℎ𝑛

ln (𝑛)
)

1

2

(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))

𝑑
→ Normal(𝜇, 𝜎2) 

as 𝑛 → ∞, with 𝜇 =
𝜆𝑐

′′(𝑠)

2
∫ 𝑧2𝐾(𝑧)𝑑𝑧

1

−1
,  

and 𝜎2 = 𝜏𝜆𝑐(𝑠) ∫ 𝐾2(𝑧)𝑑𝑧.
1

−1
 

 
Theorem 3 (Asymtotic Normality of 

�̂�𝒄,𝒏,𝑲(𝒔)for 𝒃 > 1) 
Suppose that the intensity 𝜆 satisfies 

(1) and locally integrable. The kernel 
function 𝐾 satisfies (K1), (K2), (K3), and 𝜆𝑐 
has a bounded second derivative around 
of 𝑠, 𝑏 > 1, 𝑛2ℎ𝑛 → ∞, ℎ𝑛 ↓ 0 as 𝑛 → ∞, 

a) If (𝑛2ℎ𝑛
5)

1

2 → 0, then 

(𝑛2ℎ𝑛)
1

2(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))
𝑑
→ Normal(0, 𝜎2) 

As𝑛 → ∞, with 𝜎2 =

𝜏2−𝑏𝜆𝑐(𝑠)𝜁(𝑏) ∫ 𝐾2(𝑧)𝑑𝑧
1

−1
and 𝜁(𝑏) =

lim
𝑛→∞

(∑
1

𝑘𝑏
∞
𝑘=1 𝐼(𝑥 + 𝑠 + 𝑘𝜏 ∈ [0, 𝑛])) . 

b) If (𝑛2ℎ𝑛
5)

1

2 → 1, then 

(𝑛2ℎ𝑛)
1

2(�̂�𝑐,𝑛,𝐾(𝑠) − 𝜆𝑐(𝑠))
𝑑
→ Normal(𝜇, 𝜎2) 

as 𝑛 → ∞, with 𝜇 =
𝜆𝑐

′′(𝑠)

2
∫ 𝑧2𝐾(𝑧)𝑑𝑧

1

−1
, 𝜎2 =

𝜏2−𝑏𝜆𝑐(𝑠)𝜁(𝑏) ∫ 𝐾2(𝑧)𝑑𝑧
1

−1
 and 𝜁(𝑏) =

lim
𝑛→∞

(∑
1

𝑘𝑏
∞
𝑘=1 𝐼(𝑥 + 𝑠 + 𝑘𝜏 ∈ [0, 𝑛])) . 

The proofs of theorems above can be 
obtained through a rough analysis, 
(Maulidi, 2015). However, the basic theory 
to proof these theorems can be studied 
in(Dudley, 1989), (Hogg et al., 2005), and 
(Serfling, 1980). 

The simulation is given by 
generating local intensity estimators at 
intervals [0, 20𝜏]. It can be choosed other 
values of 𝜏, in this simulation we choose 
𝜏 = 5. The method used is the Monte Carlo 
method. The purpose of this simulation is 
to see how convergence the variance and 
bias of the estimator. 
The intensity function used in this 
simulation is 

𝜆(𝑠) = [2𝑒𝑥𝑝 (𝑠𝑖𝑛 (
2𝜋𝑠

5
))] 𝑠𝑏 

for 𝑏 = 0.5, 𝑏 = 1, and 𝑏 = 2. The chosen 
bandwidth is the optimal bandwidth that 
minimizes MSE, see [2], is as follows: 
ℎ𝑛 =

[
𝜏𝜆𝑐(𝑠) ∫ 𝐾2(𝑥)𝑑𝑥

1

−1

(1−𝑏)(𝜆𝑐
′′(𝑠) ∫ 𝑥2𝐾(𝑥) 𝑑𝑥

1

−1
)

2]

1

5

𝑛−(1,5) 5⁄ ,for 𝑏 =

0.5, 

ℎ𝑛 = [
𝜏𝜆𝑐(𝑠)𝑙𝑛(𝑛) ∫ 𝐾2(𝑥)𝑑𝑥

1

−1

(𝜆𝑐
′′(𝑠) ∫ 𝑥2𝐾(𝑥) 𝑑𝑥

1

−1
)

2 ]

1

5

𝑛−2 5⁄ ,  

for 𝑏 = 1, 

ℎ𝑛 = [
𝜏2−𝑏𝜆𝑐(𝑠)𝜁(𝑏) ∫ 𝐾2(𝑥)𝑑𝑥

1

−1

(𝜆𝑐
′′(𝑠) ∫ 𝑥2𝐾(𝑥) 𝑑𝑥

1

−1
)

2 ]

1

5

𝑛−2 5⁄ , 

for 𝑏 = 2. 
 

The kernel function that has been 
used in this simulation was a uniform 

kernel function 𝐾(𝑥) =
1

2
, −1 ≤ 𝑥 ≤ 1, 𝑥 ∈

 ℝ.  The simulation used R program. The 
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simulation algorithms are given as 
follows: 
a. Generate the realization of periodic 

Poisson process at interval [0, 𝑛] and 
period 𝜏. 

b. Generate the estimator at a point 𝑠 with 
the bandwidth ℎ𝑛 and uniform kernel. 

c. Determine mean of the estimator, mean 
of the theory, variance of the estimator, 
variance of the theory, bias, and the 
difference between the variance of the 
estimator and variance of the theory. 

 

RESULTS AND DISCUSSION 

The results of the simulation for each 
case of the value 𝑏 with s=3 are shown in 
Table 1, Table 2, and Table 3 as follows:  

 
 
 
 
 
 
 

 

Table 1. The simulation results from the estimator generated and the theoretical results 
for 𝑏 = 0.5 

n 𝝀𝒏,�̂� theory 𝝀𝒏,�̂� simulation �̂�𝟐 theory �̂�𝟐 simulation Bias 
�̂�𝟐 theory - �̂�𝟐 

simulation 
100 1.9245 1.7431 0.1195 0.1796 -0.1814 0.0600 
300 1.9245 1.8121 0.0496 0.0725 -0.1124 0.0228 
500 1.9245 1.8570 0.0330 0.0473 -0.0675 0.0143 

1000 1.9245 1.8833 0.0189 0.0269 -0.0412 0.0101 
1500 1.9245 1.8951 0.0137 0.0207 -0.0294 0.0070 
2000 1.9245 1.9048 0.0109 0.0174 -0.0197 0.0174 

 

Table 2. The simulation results from the estimator generated and the theoretical results 
for 𝑏 = 1 

n 𝝀𝒏,�̂� theory 𝝀𝒏,�̂� simulation �̂�𝟐 theory �̂�𝟐 simulation Bias 
�̂�𝟐 theory - �̂�𝟐 

simulation 
100 3.3333 1.7026 0.0069 0.0032 -1.6307 -0.0037 
300 3.3333 1.8458 0.0014 0.0008 -1.4875 -0.0006 
500 3.3333 1.8767 0.0007 0.0005 -1.4566 -0.0002 

1000 3.3333 1.9013 0.0002 0.0002 -1.4321 0 

 

Table 3. The simulation results from the estimator generated and the theoretical results 
for 𝑏 = 2 

n 𝝀𝒏,�̂� theory 𝝀𝒏,�̂� simulation �̂�𝟐 theory �̂�𝟐 simulation Bias 
�̂�𝟐 theory - �̂�𝟐 

simulation 
50 10.0000 5.4328 0.0011 0.0219 -4.5672 -0.0207 
70 10.0000 6.2890 0.0005 0.0177 -3.7110 -0.0172 
80 10.0000 6.6024 0.0004 0.0141 -3.3976 -0.0137 

100 10.0000 6.8237 0.0002 0.0103 -3.1763 -0.0101 
120 10.0000 7.4096 0.0001 0.0090 -2.5904 -0.0089 

 

Table 1 shows the bias values and 
the difference between the variance of the 
theory and variance of the simulation. It 
can be seen that the bias in Table 1 
converges to zero faster than the bias in 
Table 2 and Table 3. The value of 𝑏 =
0.5  From this simulation, the larger values 
of 𝑏 requires a large interval of 

observation to determine the convergence 
of the estimator. 
Unlike the bias, the variance values in 
Table 1 are slower to converge to zero 
when compared to Table 2 and Table 3. So 
that the greater value of 𝑏, than the smaller 
variance of the estimator. 
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𝜆(𝑠) 

𝑠 

Figure 1.Graph of intensity function( the blue line) and its estimated value (the red line) 
with observation interval [0,100] for 𝑏 = 0.5using uniform kernel function 

 

𝜆(𝑠) 

𝑠 

Figure 2.Graph of intensity function (the blue line) and its estimated value (the red line) 
with observation interval [0,100] for 𝑏 = 1using uniform kernel function 
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𝜆(𝑠) 

 

𝑠 

Figure 3. Graph of intensity function (the blue line) and its estimated value (the red line)  
with observation interval [0,100] for 𝑏 = 2 using uniform kernel function 

 

Figure 1, Figure 2, and Figure 3 show 
the alleged plot of the estimator and the 
actual intensity function. From the figure, 
it can be seen that the greater the value of 
𝑏, then bias, which in this case represents 
the difference between the red points and 
the graph lines of intensity, is greater for 
the observation interval [0,100]. 

CONCLUSIONS AND SUGGESTIONS 

From the simulation that has been 
done to see the convergence rate of bias 
and variance of the estimator, the results 
show that the greater the value 𝑏, then the 
larger observation interval will be needed 
to achieve the convergence of estimators.  
This results should be proved 
theoretically by using estimator proposed 
and the Theorems related. 

The suggestions for the next 
simulation are to provide a numerical 
simulation for each case of Theorem 1, 
Theorem 2, and Theorem 3 specifically. It 
could be done by taken the bandwidth 
function which satisfies the given 
conditions.  
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