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 El Nino is a global climate phenomenon caused by the warming of sea 
surface temperatures in the eastern Pacific Ocean. El Nino has a 
powerful effect on the intensity of rainfall in several areas in 
Indonesia. El Nino impacts can be minimized by predicting the El 
Nino index from the sea surface temperature in the Nino 3.4 area. 
Therefore, many researchers have tried to predict sea surface 
temperature, and many prediction data are available, one of which is 
ECMWF. But, in reality, the ECMWF data still contains systematic 
errors or bias towards the observations. Consequently, El Nino 
predictions using ECMWF data are less accurate. For that reason, this 
study aims to correct the ECMWF data in the Nino 3.4 area using 
statistical bias correction with a quantile mapping approach. This 
method uses ECMWF data from 1983-2012 as training data and 
2013-2018 as testing data. For this case, the results showed that 60% 
of El Nino's predictions on the testing data had improved the mean 
value. Also, all of El Nino's predictions on the testing data have 
improved the standard deviation value. Moreover, data testing's 
expected error can be corrected for all months in the 1st to 4th lead 
times. But, in the 5th to 7th lead times, only November-June can be 
corrected. 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 
INTRODUCTION 

Indonesia is a country with a lot of natural 
resources. But, the environmental damage 
in Indonesia is relatively high. One of them 
is caused by climate change. Climate 
change is already having visible effects on 
the world. The Earth is warming, rainfall 
patterns are changing, and sea levels are 
rising. These changes can increase the risk 
of floods, droughts, heatwaves, and fires. 

Indonesia's climate conditions are 
influenced by conditions of sea surface 
temperature, both in the Pacific and Indian 
Ocean (including local SST in Indonesian 
seas) (Aldrian & Susanto, 2003). The 
climatic conditions in the Pacific Ocean are 
known as El Nino Southern Oscillation 
(ENSO), and the climatic conditions in the 
Indian Ocean are known as Indian Ocean 
Dipole (IOD). 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1510197406&1&&
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1510199675&1&&
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El Nino is an ocean-atmosphere 
phenomenon on a global scale (Philander, 
1989). El Nino occurs when there is a 
positive difference between observed sea 
surface temperatures and normal 
conditions in the equatorial Pacific Ocean. 
This condition recurs every 3-8 years 
(Nabilah et al., 2017). El Nino is indicated 
by the sea surface temperature in the 
Pacific Ocean, and the difference in air 
pressure between Darwin and Tahiti 
increases periodically (Taufik & Marnita, 
2004). During El Nino, Indonesia's winds 
from the Pacific Ocean contain less water 
vapor, so Indonesia's dry season is more 
extended (Hannachi, 2004). Low rainfall 
intensity and long dry season are the 
direct impacts of El Nino which can trigger 
various problems. 

El Nino's impact can be minimized by 
predicting the El Nino index using sea 
surface temperature in the Nino 3.4 area. 
Many researchers have studied to build 
prediction models for sea surface 
temperature. Therefore, many sea surface 
temperature prediction data are released 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF). But 
the ECMWF data still contains systematic 
errors or bias towards its observations. 
These biases can significantly impact 
seasonal forecasts and future climate 
predictions (Shonk et al., 2019). 

Consequently, El Nino predictions using 
ECMWF data are less accurate. So, a 
method is needed to correct the bias of the 
sea surface temperature forecast data 
from the ECMWF. One method that can be 
used is a statistical bias correction 
(Misnawati et al., 2018). 

Many scientists have studied statistical 
bias correction methods, such as Piani et 
al., who designed and applied bias 
corrections to the output of the DMI-
Hirham daily climate model over Europe, 
resulting in the same distribution as the 
observation model (Piani et al., 2010). 
Lealdi et al. used the statistical bias 

correction method to see the relationship 
between the ECMWF rainfall data and the 
BMKG's observation model in the 1996-
2015 period for cases on the island of Bali 
(Lealdi et al., 2018). Dasanto et al. use 
rainfall data in the watershed (DAS) 
Citarum Hulu with quantile mapping 
approach statistical bias correction 
(Dasanto et al., 2014) and many others 
(Ayugi et al., 2020; Katiraie-Boroujerdy et 
al., 2020; Passow & Donner, 2020; Pastén-
Zapata et al., 2020). 

This study uses the Nino 3.4 area as the 
observation area for the El Nino index. The 
Nino 3.4 anomalies may be thought of as 
representing the average equatorial SSTs 
across the Pacific from about the dateline 
to the South American coast (K. Trenberth 
& National Center for Atmospheric 
Research Staff, 2020). With the 
assumption that the HadISST data is 
observational data representing the actual 
sea surface temperature  Physical Sciences 
Laboratory NOAA uses the HadISST data 
to calculate the El Nino index (Rayner et 
al., 2003). This study uses statistical bias 
correction with a quantile mapping 
approach to see the relationship between 
the ECMWF and the HadISST data from 
1983 to 2012 in the Nino 3.4 area. The 
results will be used to correct the ECMWF 
sea surface temperature data from 2013 to 
2018 and calculate the Nino index 
prediction model. After that, the Nino 
index prediction model is evaluated 
against the actual Nino index. The Nino 
index prediction model using corrected 
ECMWF data is expected to have better 
accuracy than using ECMWF data before 
correction. 

METHOD 

Sources and Types of Data 

This study's historical sea surface 
temperature data is the global sea surface 
temperature data of The Hadley Center 
Global Sea Ice and Sea Surface 
Temperature (HadISST) from 1983 to 
2018, which can be downloaded on Met 
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Office Hadley Center official 
website http://www.metoffice.gov.uk/ha
dobs/hadisst/data/HadISST_sst.nc. This 
global HadISST data has the NetCDF 
(Network Common Data Form) format, 
and this data is sea surface temperature 
data that is released every month with a 
data dimension size of 360 (longitude) × 
180 (latitude) × 1798 (month). 

The following data is the ECMWF 
(European Centre for Medium-Range 
Weather Forecasts) forecast data from 
1983-2018, which can be accessed 
through the Center of Development and 
Research of the Meteorology, Climatology 
and Geophysics Agency (BMKG) of 
Indonesia. The data format is NetCDF. 
ECMWF data is predictive data for sea 
surface temperature in the Nino 3.4 area, 
which has dimensions of 205 (longitude) × 
45 (latitude) × 25 (ensemble) × 216 (lead 
time) for each month from 1983-2018.  

Statistical Bias Correction 

Statistical bias correction is a 
technique of connecting a relationship 
between observed and predicted data to 
form a transfer function (𝑦 = 𝑓(𝑥)). This 
function combines the values of the 
quantile of cumulative distribution 
function (CDF) of observations and 
predictions in the form of an equation  
 𝑐𝑑𝑓𝑜𝑏𝑠(𝑦)  =  𝑐𝑑𝑓𝑝𝑟𝑒𝑑(𝑥) (1) 

The relationship between 
observational and predictive data can be 
linear, exponential, or polynomial 
regression equations (Dasanto et al., 2014; 
Misnawati et al., 2018). The method that 
connects the observed and predicted data 
are called statistical downscaling, quantile 
mapping, histogram equalizing or 
statistical bias correction (Piani et al., 
2010). Misnawati et al. said the first step 
in statistical bias correction using a 
quantile mapping approach is to identify 
the distribution and probability density 
function (Misnawati et al., 2018). The 
second step is to compute the cumulative 
distribution by integrating the probability 

density function. The third step is to create 
a transfer function between the observed 
and predicted data's cumulative 
distribution. 

Research Steps 

The data obtained from HadISST and 
ECMWF are still in the NetCDF format. 
Therefore, a data extraction process is 
needed so that the data is ready to be 
processed. The data extraction process for 
HadISST data includes cutting time 
intervals, cutting Nino 3.4 domains, and 
compiling data matrices. Data is stored as 
training data from 1983-2012 and testing 
data from 2013-2018. On the other hand, 
ECMWF data were obtained between 
1983-2018 around the Nino 3.4 area so 
that the data extraction process only 
included includes adjusting the time 
interval and domain of Nino 3.4 and 
compiling a data matrix, namely training 
data from 1983-2012 and testing data 
from 2013-2018 in 1st to 7th data lead 
times. 

The second step is to identify the 
distribution of data. The distribution 
identification is executed on the HadISST 
data and the ECMWF data extracted for 
each month and the lead times. The 
distributions were identified using several 
parametric distributions as follows. 

Type-1 Extreme Value (EV) 
distribution also known as Gumbel 
distribution(E.J. Gumbel, 1941) for 
minima: 
 𝑓(𝑥 | 𝜇, 𝜎) = 𝜎−1𝑒𝑧 exp(−𝑒𝑧) (2) 
where 𝑧 = (𝑥 − 𝜇)/𝜎. 

Generalized Extreme Value (GEV) 
distribution (Hosking et al., 1985): 

 𝑓(𝑥 | 𝑘, 𝜇, 𝜎) =
1

𝜎
𝑒−𝑧

−
1
𝑘𝑧−1− 

1

𝑘 (3) 

where 𝑧 = 1 + 𝑘(𝑥 − 𝜇)/𝜎. 
Logistic (LOG) distribution (Decani 

& Stine, 1986): 
 𝑓(𝑥 | 𝜇, 𝜎) = 𝑒𝑧/[𝜎(1 + 𝑒𝑧)2] (4) 
where 𝑧 = (𝑥 − 𝜇)/𝜎. 

Normal (NOR) distribution or 
Gaussian distribution (Hald, 1949):  

http://www.metoffice.gov.uk/hadobs/hadisst/data/HadISST_sst.nc
http://www.metoffice.gov.uk/hadobs/hadisst/data/HadISST_sst.nc
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 𝑓(𝑥 | 𝜇, 𝜎) = (𝜎√2𝜋)
−1

𝑒−
1

2
𝑧2

 (5) 

where 𝑧 = (𝑥 − 𝜇)/𝜎. 
Exponential (EXP) distribution 

(Walpole, 1990): 
 𝑓(𝑥 | 𝜇) = 𝜇−1 exp(−𝑥𝜇−1)  (6) 

Gamma (GAM) distribution (Kollu et 
al., 2012): 

 𝑓(𝑥 | 𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼 𝑥𝛼−1𝑒
−

𝑥

𝛽  (7) 

Inverse Gaussian (ING) distribution 
(Chhikara & Folks, 1977): 

 𝑓(𝑥 | 𝜇, 𝜆) = √
𝜆

2𝜇2𝑥
𝑒

−
𝜆(𝑥−𝜇)2

2𝜇2𝑥  (8) 

Log-logistic (LL) distribution  

 𝑓(𝑥 | 𝜇, 𝜎) =
1

𝑥𝜎

𝑒𝑧

(1+𝑒𝑧)2
  (9) 

where 𝑧 = (log 𝑥 − 𝜇)/𝜎. 
Log-normal (LN) distribution (Kollu 

et al., 2012): 

 𝑓(𝑥 | 𝜇, 𝜎) = (𝑥𝜎√2𝜋)
−1

𝑒−
1

2
𝑧2

  (10) 

where 𝑧 = (ln 𝑥 − 𝜇)/𝜎. 
Weibull (WB) distribution (Kollu et 

al., 2012): 

 𝑓(𝑥 | 𝑎, 𝑏) =
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(
𝑥

𝑎
)

𝑏

  (11) 

The distribution is decided by several 
statistical parameter values, such as: 

Negative of the log-likelihood: 
 𝑁𝐿𝑜𝑔𝐿 = − ln ∏ 𝑓(𝑥𝑖|𝜃)𝑁

𝑖=1   (12) 
where 𝑓 is the theoretical probability 
density function with parameter 𝜃 (Bouyé 
et al., 2000). 

Kolmogorov-Smirnov error:  
 𝐾𝑆𝐸 = max|𝐹𝑖 − 𝐹̂𝑖|  (13) 

Coefficient of determination: 

 𝑅2 =
𝛴𝑖=1

𝑛 (𝐹̂𝑖−𝐹̅)2

𝛴𝑖=1
𝑛 (𝐹̂𝑖−𝐹)2+𝛴𝑖=1

𝑛 (𝐹𝑖−𝐹̂𝑖)2  (14) 

Chi-squared: 

 𝑥2 = ∑
(𝐹𝑖−𝐹̂𝑖)2

𝐹̂𝑖

𝑛
𝑖=1   (15) 

Root mean squared error (RMSE): 

 RMSE = √
1

𝑛
∑ (𝐹𝑖 − 𝐹̂𝑖)

2𝑛
𝑖=1   (16) 

where 𝑖 = 1,2, … , 𝑛 , 𝐹̂ and 𝐹 is the 
theoretical and empirical cumulative 
distribution function, respectively, and 
𝐹̅ = 1/𝑛 𝛴𝑖=1

𝑛 𝐹̂𝑖 (Kollu et al., 2012). 
The third step is to identify the bias 

of training data. In this step, the 

relationship between HadISST and 
ECMWF data is calculated using a transfer 
function. The transfer function used is the 
linear transfer function because the linear 
function is better than the quadratic, 
cubic, or the difference of two quantiles for 
ECMWF sea surface temperature data 
(Nurdiati et al., 2019). 

Let 𝑋 and 𝑌 are the quantile values of 
the ECMWF and HadISST training data 
distribution, respectively, then the linear 
transfer function equation is 
 𝑌 = 𝑓(𝑋) = 𝑎𝑋 + 𝑏 (17) 
where 𝑎 and 𝑏 are constants (Najib & 
Nurdiati, 2021). 

The next step, the ECMWF testing 
data, is identified to obtain the 
distribution function and CDF value. After 
that, the CDF data testing is corrected 
using the transfer function with the 
appropriate month and lead time to obtain 
the corrected prediction model CDF. The 
final step is to convert the corrected CDF 
into a corrected PDF prediction model 
using numerical derivatives. 

Last step, the prediction models 
before and after correction were 
compared using their probability density 
functions, the mean and standard 
deviation ratio (std), and the expected 
error. Nurdiati et al. explained that the 
mean value of the probability density 
function (PDF) could be estimated using 
the Riemann sums approach (Nurdiati et 
al., 2019).  

In a lecture note on the MAT 211 
course of Arizona State University 
delivered by David Fishman 
(https://www.cengage.com/resource_upl
oads/downloads/1439049254_242719.p
df, accessed on March 14, 2021), suppose 
that the domain of probability density 
function 𝑓 is a finite interval [𝑎, 𝑏]. Break 
up the interval into 𝑛 sub-intervals 
[𝑥𝑖−1, 𝑥𝑖], each of length Δ𝑥, as Riemann 
sums. Now, the probability of seeing a 
value of 𝑋 in [𝑥𝑖−1, 𝑥𝑖] is approximate by 
𝑓(𝑥𝑖)Δ𝑥. Think of this as the fraction of 
times we expect to see values of 𝑋 in this 

https://www.cengage.com/resource_uploads/downloads/1439049254_242719.pdf
https://www.cengage.com/resource_uploads/downloads/1439049254_242719.pdf
https://www.cengage.com/resource_uploads/downloads/1439049254_242719.pdf
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range. These values, all close to 𝑥𝑖 , then 
contribute approximately 𝑥𝑖𝑓(𝑥𝑖)Δ𝑥 to the 
average, if we average together many 
observations of 𝑋. Adding together all of 
these contributions, we get  
 mean, 𝑥̅ = ∑ 𝑥𝑖(𝑓(𝑥𝑖)𝛥𝑥𝑖

∗)𝑛
𝑖=0   (18) 

Now, these approximations get better as 
𝑛 → ∞, and the sum above is a Riemann 
sum converging to  

 𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 (19) 

which is the formula of the mean or 
expected value of a continuous random 
variable 𝑋 with probability density 
function 𝑓.  

Using the same approach, the 
variance of 𝑋 can be approximate using 
formula 

 var, 𝜎2 =
∑ (𝑥𝑖−𝑥̅)2(𝑓(𝑥𝑖)𝛥𝑥𝑖

∗)𝑛
𝑖=0

∑ (𝑓(𝑥𝑖)𝛥𝑥𝑖
∗)𝑛

𝑖=0

 (20) 

the sum above is a Riemann sum 
converging to 

 var(𝑋) = ∫ (𝑥 − 𝑥̅)𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 (21) 

which is the formula of variance value of a 
continuous random variable 𝑋. So, the 
standard deviation of can be approximate 
using formula 

 std, 𝜎 = √
∑ (𝑥𝑖−𝑥̅)2(𝑓(𝑥𝑖)𝛥𝑥𝑖

∗)𝑛
𝑖=0

∑ (𝑓(𝑥𝑖)𝛥𝑥𝑖
∗)𝑛

𝑖=0

 (22) 

where 𝑥𝑖  is the value of 𝑥-axis order-𝑖, 
𝑓(𝑥𝑖) is the probability density values of 𝑥𝑖  
and ∆𝑥𝑖 is difference of 𝑥𝑖  and 𝑥𝑖−1.  

Based on that, the error of the model 
is given by 
 𝑒𝑟𝑟 = |𝑥̅𝑝 − 𝑥𝑜𝑏𝑠| (23) 

with 𝑥̅𝑝 is the mean value of the prediction 

model and 𝑥𝑜𝑏𝑠 is the actual Nino index. 
After that, the value of mean and standard 
deviation ratio is given by 

 mean ratio, 𝑟𝑥̅ =
(𝑥̅𝑐𝑜𝑟− 𝑥𝑜𝑏𝑠)

|𝑥̅𝑚𝑜𝑑−𝑥𝑜𝑏𝑠|
 (24) 

 std ratio, 𝑟𝜎 =
𝜎𝑐𝑜𝑟

𝜎𝑚𝑜𝑑
  (25) 

with 𝑥̅𝑐𝑜𝑟 is the mean value of the 
corrected ECMWF model, 𝑥̅𝑚𝑜𝑑  is the 
mean value of the ECMWF model and 𝑥𝑜𝑏𝑠 
is the actual value, and 𝜎𝑐𝑜𝑟 is the standard 
deviation value of the corrected ECMWF 
model and 𝜎𝑚𝑜𝑑  is the standard deviation 
value of the ECMWF model. Moreover, the 

expected error value is the average error 
that occurs for each ECMWF data 
correction in each month and lead time. 

RESULTS AND DISCUSSION 

Data Extraction 

The Hadley Centre Global Sea Ice and 
Sea Surface Temperature (HadISST) is 
monthly global sea surface temperature 
data. HadISST data is downloaded in the 
Network Common Data Form (NetCDF), 
composed of four variables: 
lon, lat, time, and sst. The time vector 
variable has a size of 1798 × 1, the latitude 
(lat) vector has a size of 180 × 1, the 
longitude (lon) vector has a size of 360 × 1, 
and the sst variable shows sea surface 
temperature data which has a size of 360 
× 180 × 1798 (longitude × latitude × time) 
in Celcius degree (°C). The data extraction 
process begins with reading the netCDF 
data file. Then the data is cut from 1983-
2012 for the HadISST training data. Lastly, 
the data is truncated for the Nino 3.4 
region, which is 5°S-5°N, and 170°W-
120°W (K. E. Trenberth, 1997). 
The ECMWF prediction data used is sea 
surface temperature prediction data with 
ensemble modeling. Prediction data is 
downloaded around Nino 3.4, which has 
dimensions with five variables: 
lon, lat, ensemble, lead time, and sst. The 
lon and lat variables show the longitude 
and latitude of the ECMWF prediction 
data, which has a size of 205 × 1 and 45 × 
1, respectively. The ensemble variable 
indicates the number of predictive models 
from the ECMWF prediction data and has 
a size of 25 × 1. The lead time variable 
shows the prediction period, which is 216 
days or approximately seven months. The 
sst variable shows the sea surface 
temperature from the ECMWF prediction 
data, which has a size of 205 × 41 × 25 × 
216 (longitude × latitude × ensemble × 
lead time). The ECMWF prediction data 
has a spatial resolution of 0.25°× 0.25°. 
The ECMWF prediction data that will be 
used is the ECMWF forecast data for the 
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years 1982-2018 in Nino 3.4 area in the 
NetCDF (Network Common Data Form) 
format. The ECMWF data extraction 
process begins with reading the netCDF 
data file. Each data file has its own 
“add_offset” and “scale_factor” values and 
is in Kelvin units. Therefore, the data file is 
transformed into units of degrees Celsius 
(°C) using the following equation 
 𝑇∗ = 𝑇 × SF + AO − 273.15 (26) 

SF and AO are the “scale factor” dan “add 
offset” attribute from each NetCDF file, 
respectively,    is the initial sea surface 
temperature and the sea surface 
temperature that is ready to be processed 
and used. After that, the data was 
readjusted for its location in the Nino 3.4 
area and the data was compiled into 
training data from 1983-2012 and testing 
data from 2013-2018. 

Distribution Identification 

Distribution identification is carried 
out on the extracted HadISST and ECMWF 

training data. Distribution identification is 
done every month and lead times so that 
there are 12 distributions for 12 months 
on HadISST data and 12 × 7 distributions 
for 12 months and 7 lead times on ECMWF 
training data. The data distribution is 
identified using several distributions that 
have been mentioned in the research step. 
After several distribution functions were 
obtained, the distribution functions were 
tested using the goodness-of-fit test with 
several parameters, which are KSE, NLogL, 
𝑅2, and 𝑥2. Kollu et al., (2012) said the 
goodness-of-fit test was used to measure 
the deviation between the predicted data 
using the theoretical distribution function 
and the empirical data distribution. The 
smaller KSE, NLogL, 𝑥2, and RMSE values 
and the larger 𝑅2 value resulted in the 
distribution getting closer to the actual 
data. The results of the process of 
identifying the distribution of HadISST 
and ECMWF training data can be seen in 
Figure 1.

 
 

Figure 1. The results of distribution identification of HadISST and ECMWF training data 
for each month and lead time 
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Bias Identification 

After the distribution of HadISST and 
ECMWF training data are obtained, bias 
identification was carried out to find a 
transfer function between the HadISST 
and ECMWF training data. Bias is the 
difference or deviation between the 
expected value of the estimator and the 
predicted parameter. Bias identification 
can be observed by looking at the HadISST, 
and ECMWF training data distribution 
function's different quantile values.. A 
quantile is a value that divides a range of 
data into equal parts. The n-th quantile 
value of 𝑋 is given by 
 𝑄(𝑛)  =  𝐹−1(𝑛) for 0 < 𝑛 < 1 (27) 
where 𝑄(𝑛) is the n-th quantile value of 𝑋 
and 𝐹(𝑛) is the n-th CDF value of 𝑋. The 

quantity to be used is 40 parts with an 
upper and a lower limit of 0.001 and 0.999. 
Thus, the value of 𝑛 that will be used is 
0.001, 0.025, 0.05, …, 0.975, and 0.999. 

Determining the transfer function 
starts with calculating the quantile value 
of the HadISST and ECMWF training data 
distribution. After that, calculate the linear 
regression function between the ECMWF 
data quantiles against the HadISST data. 
After the linear equations are obtained, 
calculate the 𝑅2 and RMSE values to test 
the goodness-of-fit of the transfer function 
against the data. The results of the transfer 
function in the first lead time can be seen 
in Figure 2.  

 

 

Figure 2. Plot of the results of determining the transfer function between the HadISST 
and ECMWF training data at the 1st lead time from January to December using the linear 

transfer function. 

The transfer function can be said to 
be good and acceptable if it has an 𝑅2 value 
more than 70% (Dasanto et al., 2014). 
Based on Figure 2, it can be seen that the 
linear function is acceptable as a transfer 
function for sea surface temperature data 
in the Nino 3.4 area because the 𝑅2 value 
of the transfer function is more than 90%. 
Because the transfer function is 
acceptable, the transfer function can be 
used for further processing. The process of 
determining the transfer function is 
repeated for the 2nd to 7th lead times and 

the value of the goodness of fit test shows 
that the transfer function is acceptable. 

Bias Correction for Testing Data 

In this step, bias correction is carried 
out from 2013-2018 ECMWF testing data. 
The bias correction step begins with data 
extraction. The next step is to identify the 
distribution of testing data for each month, 
lead time, and year. After the distribution 
identification results are obtained for each 
month, lead time, and year, the step is 
continued by calculating the CDF and 
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quantile values with predetermined 𝑛 
values. Next, correct the quantile of the 
ECMWF data by evaluating the value on 
the transfer function with the appropriate 
month and lead times, so that the CDF of 

the corrected ECMWF data is obtained. 
The results of the bias correction towards 
the ECMWF testing data in 2013 at the 1st 
lead time can be seen in Figure 3.  

 

Figure 3. The CDF results of the bias correction step towards the ECMWF testing data in 
2013 at the 1st lead time 

Figure 3 shows that there was a shift 
in the CDF to the left, meaning that the 
2013 ECMWF data at the first lead time 
were generally overestimated. The 
correction process is continued for the 1st 
to 7th lead time from 2013-2018. After the 
CDF of the corrected ECMWF data is 
obtained, the PDF of the corrected ECMWF 

data is calculated by deriving the CDF 
using a numerical derivative, which is the 
finite difference method. The PDF results 
of the bias correction step towards the 
ECMWF testing data in 2013 at the 1st lead 
time and their comparison to the exact 
values can be seen in Figure 4. 

 

 

Figure 4. The PDF results of the bias correction step towards the ECMWF testing data in 
2013 at the 1st lead time and their comparison to the exact values 

Figure 4 shows that the PDF of the 
corrected ECMWF model higher than the 
initial ECMWF model, which means there 
has been an improvement in the standard 
deviation of the ECMWF prediction data. 
Also, it can be seen that there is a shift in 
the graph towards the left of the initial 

ECMWF as in Figure 3. The PDF calculation 
process is repeated for each month and 
lead times from 2013-2018.  

Evaluation of The Prediction Models 

Comparison of the PDF  
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This section will compare the PDF 
value of the ECMWF data before and after 
correction against the exact El Nino index 
value. Comparison of the PDF value of 
ECMWF data before and after correction 
to the exact value of the El Nino index at 
the 1st lead time in 2013 can be seen in 
Figure 4. Based on Figure 4, almost all 
months can be corrected for the accuracy 

and standard deviation values shown by 
the PDF function of the corrected model 
which is closer to the Nino index value and 
higher than the PDF function of the initial 
ECMWF model. For more details, the 
comparison of the mean value of the PDF 
function at the 1st lead time in 2013 can be 
seen in Figure 5. 

 

Figure 5. The comparison of the mean value of the PDF function of the ECMWF model 
before and after correction to the exact Nino index value at the 1st lead time in 2013 

Based on Figure 5, it can be seen that 
the mean of the corrected ECMWF model 
is closer to the exact value of the Nino 3.4 
index than the mean of the initial ECMWF 
model, meaning that the corrected model 
has better accuracy than the initial model. 

The mean and standard deviation ratio 

This section will compare the 
accuracy and precision of the ECMWF 
model before and after correction based 
on the mean ratio (𝑟𝑥̅) and the standard 
deviation ratio (𝑟𝜎). The mean and 
standard deviation ratio values are given 
by equations (24) and (25). The mean 
ratio is used to compare the accuracy of 

the ECMWF model before and after 
correction, while the standard deviation 
ratio is used to compare the standard 
deviation of the ECMWF model before and 
after correction.  

Two conditions for the corrected 
model can be said to be better than the 
initial model, which are the mean ratio 
value must be in the interval (−1,1) and 
the standard deviation ratio value is in the 
interval (0,1) (Lealdi et al., 2018; Nurdiati 
et al., 2019). For example, the calculation 
of the mean and standard deviation ratio 
at the first lead time in 2013 can be seen in 
Table 1.  

 

 

 

 

 

 

 



Desimal, 4 (1), 2021 - 88 

Sri Nurdiati, Elis Khatizah, Mohamad Khoirun Najib, Linda Leni Fatmawati 

Copyright © 2021, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

Table 1. The value of the mean and standard deviation ratio at the 1st lead time in 2013 

Month 𝒙𝒎𝒐𝒅 𝒙𝒄𝒐𝒓 𝒙𝒐𝒃𝒔 𝒓𝒙̅ 𝝈𝒎𝒐𝒅 𝝈𝒄𝒐𝒓 𝒓𝝈 
January 26.51 26.21 26.16 0.1548 0.9471 0.8933 0.9431 
February 26.75 26.45 26.36 0.2351 0.7356 0.6967 0.9471 
March 27.61 27.27 27.12 0.2982 0.5220 0.5046 0.9667 
April 27.96 27.63 27.69 -0.2373 0.5496 0.4820 0.8770 
May 27.85 27.65 27.59 0.2161 0.8038 0.6184 0.7694 
June 27.55 27.47 27.36 0.5537 0.9504 0.7350 0.7734 

July 26.95 26.85 26.94 -11.571 1.2897 1.0990 0.8520 
August 26.65 26.59 26.59 0.0141 1.2807 1.0755 0.8398 
September 26.85 26.65 26.66 -0.0614 1.0387 0.9635 0.9276 

October 26.62 26.35 26.49 -1.1272 1.1197 1.0411 0.9298 
November 26.94 26.60 26.64 -0.1444 1.1904 1.1318 0.9508 
December 26.80 26.53 26.50 0.0960 1.0494 0.9437 0.8993 

Table 1 shows that the results of 
statistical bias correction using quantile 
mapping approach at the 1st lead time in 
2013 all months except July and October 
get satisfactory results which is the 
accuracy and standard deviation value of 
the initial model can be corrected 
indicated by the mean ratio values are in 
the interval (−1,1) and the standard 
deviation ratio values are in the interval 
(0,1). Meanwhile, July and October can be 

said to be quite good because only the 
standard deviation value can be corrected. 
The results of the bias correction 
evaluation can be visualized in a scatter 
plot of the ratio of the mean to standard 
deviation of the ECMWF data ratio each 
month and lead time from 2013-2018 
which can be seen in Figure 6. Each point 
in Figure 6 represents the mean and 
standard deviation ratio for a given 
month, lead time, and year. 

 

 

Figure 6. The plot of the mean ratio against standard deviation ratio of the ECMWF 
data for each month and lead time in 2013-2018 

Based on Figure 6, the standard 
deviation value of all ECMWF testing data 
in 2013-2018 can be corrected using the 
quantile mapping approach, which is 
indicated by all points in Figure 6 as less 
than 1 on the y-axis. Meanwhile, the 
accuracy value of most of the ECMWF 

testing data in 2013-2018 (about 60% of 
the data) can be corrected using the 
quantile mapping method, which is shown 
by the points in Figure 6 being in the 
interval (-1, 1) on the x-axis. 

Expected error 
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The expected error is the expected 
value of the error between the true value 
and the resulting value. The expected 
error value can be found by calculating the 
average accuracy value of the ECMWF data 
before and after correction in 2013-2018 

for each month and lead time. The 
comparison of the expected error value 
from the ECMWF data before and after 
correction for each month and the lead 
time can be seen in Figure 7. Sebagai 
contoh, dapat dilihat pada Gambar 1.  

 
 
 

 

Figure 7. The comparison of the expected error value from the ECMWF data before and 
after correction for each month and the lead time

Based on Figure 7, the expected 
error of the corrected ECMWF is brighter 
than the expected error of the initial 
ECMWF. This shows that the quantile 
mapping method can correct the expected 
error of the ECMWF prediction data 
around the Nino 3.4 area almost every 
month and lead time, especially at the 1st 
to 4th lead time in all months and at the 
5th to 7th lead time in November to June. 
Prediction for July-October is difficult to 
correct because sea surface temperature 
in the Nino 3.4 area is very fluctuating 
during these months. In climatology, the 
difficulty of climate prediction from July to 
October is known as the “spring 
predictability barrier”. 

CONCLUSIONS AND SUGGESTIONS 

Using the quantile mapping 
approach, the statistical bias correction 
method can adequately correct the 
ECMWF testing model in most of the lead 
times and months based on the HadISST 
and ECMWF training data. For this case, 
the results showed that 60% of El Nino's 
predictions on the testing data had 

improved the mean value. Also, all of El 
Nino's predictions on the testing data have 
improved the standard deviation value. 
Moreover, the quantile mapping approach 
is effectively used to correct ECMWF 
prediction data's bias for all months in the 
1st to 4th lead times. But, in the 5th to 7th 
lead times, only November-June can be 
corrected. This is indicated by the 
expected error of the corrected ECMWF 
model is smaller than the expected error 
of the initial ECMWF model. 

This study is only limited to using a 
quantile mapping approach with a linear 
transfer function. Many transfer functions 
other than linear can be used, such as 
polynomials, exponential, and even only 
the difference of each quantile point (not 
an equation). Besides the quantile 
mapping approach, there are other 
approaches for statistical bias correction, 
such as mean and variance scaling, 
nudging bias correction, change factor 
bias correction, etc. Various types of 
transfer functions and other approaches 
can be used to correct ECMWF data bias to 
predict the El Nino index and can be 
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compared with the quantile mapping 
approach in this study. 

REFERENCES 

Aldrian, E., & Susanto, R. D. (2003). 
Identification of three dominant 
rainfall regions within indonesia and 
their relationship to sea surface 
temperature. International Journal of 
Climatology, 23(12), 1435–1452. 
https://doi.org/10.1002/joc.950 

Ayugi, B., Tan, G., Ruoyun, N., Babaousmail, 
H., Ojara, M., Wido, H., Mumo, L., 
Ngoma, N. H., Nooni, I. K., & Ongoma, 
V. (2020). Quantile mapping bias 
correction on rossby centre regional 
climate models for precipitation 
analysis over Kenya, East Africa. 
Water (Switzerland), 12(3), 801. 
https://doi.org/10.3390/w1203080
1 

Bouyé, E., Durrleman, V., Nikeghbali, A., 
Riboulet, G., & Roncalli, T. (2000). 
Copulas for finance - a reading guide 
and some applications. SSRN 
Electronic Journal. 
https://doi.org/10.2139/ssrn.10325
33 

Chhikara, R. S., & Folks, J. L. (1977). The 
inverse gaussian distribution as a 
lifetime model. Technometrics, 19(4), 
461–468. 
https://doi.org/10.1080/00401706.
1977.10489586 

Dasanto, B. D., Boer, R., Pramudya, B., & 
Suharnoto, Y. (2014). Evaluasi curah 
hujan TRMM menggunakan 
pendekatan koreksi bias statistik. 
Jurnal Tanah Dan Iklim, 38(1), 15–24. 
https://doi.org/10.2017/jti.v38i1.62
44 

Decani, J. S., & Stine, R. A. (1986). A note on 
deriving the information matrix for a 
logistic distribution. American 
Statistician, 40(3), 220–222. 
https://doi.org/10.1080/00031305.
1986.10475398 

E.J. Gumbel. (1941). Return Period of 
Floods. The Annals of Mathematical 
Statistics, 12(2), 163–190. 

Hald, A. (1949). Maximum likelihood 
estimation of the parameters of a 
normal distribution which is 
truncated at a known point. 
Scandinavian Actuarial Journal, 
1949(1), 119–134. 
https://doi.org/10.1080/03461238.
1949.10419767 

Hannachi, A. (2004). A primer for EOF 
analysis of climate data. Department 
of Meteorology, University of Reading, 
1(29). 

Hosking, J. R. M., Wallis, J. R., & Wood, E. F. 
(1985). Estimation of the generalized 
extreme-value distribution by the 
method of probability-weighted 
moments. Technometrics, 27(3), 251–
261. 

Katiraie-Boroujerdy, P. S., Naeini, M. R., 
Asanjan, A. A., Chavoshian, A., Hsu, K. 
lin, & Sorooshian, S. (2020). Bias 
correction of satellite-based 
precipitation estimations using 
quantile mapping approach in 
different climate regions of Iran. 
Remote Sensing, 12(13), 2102. 
https://doi.org/10.3390/rs1213210
2 

Kollu, R., Rayapudi, S. R., Narasimham, S. V. 
L., & Pakkurthi, K. M. (2012). Mixture 
probability distribution functions to 
model wind speed distributions. 
International Journal of Energy and 
Environmental Engineering, 3(1), 1–
10. https://doi.org/10.1186/2251-
6832-3-27 

Lealdi, D., Nurdiati, S., & Sopaheluwakan, 
A. (2018). Statistical bias correction 
modelling for seasonal rainfall 
forecast for the case of Bali island. 
Journal of Physics: Conference Series, 
1008(1), 12–18. 
https://doi.org/10.1088/1742-
6596/1008/1/012018 



Desimal, 4 (1), 2021 - 91 

Sri Nurdiati, Elis Khatizah, Mohamad Khoirun Najib, Linda Leni Fatmawati 

Copyright © 2021, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

Misnawati, Boer, R., June, T., & Faqih, A. 
(2018). Perbandingan metodologi 
koreksi bias data curah hujan CHIRPS. 
LIMNOTEK - Perairan Darat Tropis Di 
Indonesia, 25(1), 18–29. 
https://limnotek.limnologi.lipi.go.id/
index.php/limnotek/article/view/22
4 

Nabilah, F., Prasetyo, Y., & Sukmono, A. 
(2017). Analisis pengaruh fenomena 
el nino dan la nina terhadap curah 
hujan tahun 1998 - 2016 
menggunakan indikator oni (Oceanic 
Nino Index) (Studi Kasus : Provinsi 
Jawa Barat). Jurnal Geodesi Undip, 
6(4), 402–412. 

Najib, M. K., & Nurdiati, S. (2021). Koreksi 
bias statistik pada data prediksi suhu 
permukaan air laut di wilayah indian 
ocean dipole barat dan timur. 
Jambura Geoscience Review, 3(1), 9–
17. 
https://doi.org/10.34312/jgeosrev.v
3i1.8259 

Nurdiati, S., Sopaheluwakan, A., & Najib, M. 
K. (2019). Statistical bias correction 
for predictions of indian ocean dipole 
index with quantile mapping 
approch. International MIPAnet 
Conference on Science and 
Mathematics (IMC-SciMath), Medan. 

Passow, C., & Donner, R. V. (2020). 
Regression-based distribution 
mapping for bias correction of 
climate model outputs using linear 
quantile regression. Stochastic 
Environmental Research and Risk 
Assessment, 34(1), 87–102. 
https://doi.org/10.1007/s00477-
019-01750-7 

Pastén-Zapata, E., Jones, J. M., Moggridge, 
H., & Widmann, M. (2020). Evaluation 
of the performance of Euro-CORDEX 
Regional Climate Models for 
assessing hydrological climate 
change impacts in Great Britain: A 
comparison of different spatial 

resolutions and quantile mapping 
bias correction methods. Journal of 
Hydrology, 584, 124653. 

Philander, S. G. (1989). El Niño, La Niña, 
and the Southern Oscillation. 
International Geophysics Series, 46, X–
289. 

Piani, C., Haerter, J. O., & Coppola, E. 
(2010). Statistical bias correction for 
daily precipitation in regional climate 
models over Europe. Theoretical and 
Applied Climatology, 99(1), 187–192. 
https://doi.org/10.1007/s00704-
009-0134-9 

Rayner, N. A., Parker, D. E., Horton, E. B., 
Folland, C. K., Alexander, L. V., Rowell, 
D. P., Kent, E. C., & Kaplan, A. (2003). 
Global analyses of sea surface 
temperature, sea ice, and night 
marine air temperature since the late 
nineteenth century. Journal of 
Geophysical Research: Atmospheres, 
108(D14), 4407. 
https://doi.org/10.1029/2002jd002
670 

Shonk, J. K., Demissie, T. D., & Toniazzo, T. 
(2019). A double ITCZ 
phenomenology of wind errors in the 
equatorial Atlantic in seasonal 
forecasts with ECMWF models. 
Atmospheric Chemistry and Physics, 
19(17), 11383–11399. 

Taufik, & Marnita. (2004). IPBA (Imu 
pengetahuan bumi dan antariksa). 
Universitas Al Muslim. 

Trenberth, K. E. (1997). The definition of 
el niño. Bulletin of the American 
Meteorological Society, 78(12), 2771–
2777. 
https://doi.org/10.1175/1520-
0477(1997)078<2771:TDOENO>2.0.
CO;2 

Trenberth, K., & National Center for 
Atmospheric Research Staff. (2020). 
The climate data guide: Nino SST 
indices (Nino 1+2, 3, 3.4, 4; ONI and 



Desimal, 4 (1), 2021 - 92 

Sri Nurdiati, Elis Khatizah, Mohamad Khoirun Najib, Linda Leni Fatmawati 

Copyright © 2021, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

TNI). 
https://climatedataguide.ucar.edu/cl
imate-data/nino-sst-indices-nino-
12-3-34-4-oni-and-tni 

Walpole, R. E. (1990). Pengantar statistika, 
edisi ke-3 (Introduction to statistics). 
PT Gramedia Pustaka Utama. 

 


