Mathematical creative thinking ability: The impact of adversity quotient on triangle and quadrilateral shapes material

https://doi.org/10.24042/djm.v5i2.12642

Slamet Mey Rizalno, Sigid Edy Purwanto

Abstract


This research has a background, namely the ability to think mathematical creatively. This is because students pay less attention to the mathematics learning process. This will have an impact on the ability to think creatively in mathematics so that it will not develop properly. Adversity Quotient is the creative thinking ability of a student who can solve problems well if supported by good solving skills. The purpose of this research is to see the creative thinking ability of students in terms of the adversity quotient. The method in this research is descriptive qualitative research with an interview process. Data collection in this research is in the form of instrument questions that contain indicators of creative thinking, namely fluency, flexibility, originality, and elaboration. The results of the research were seen from the results of the answers to the questions on the mathematical creative thinking ability instrument and the adversity quotient, which contained that students had three types of adversity quotient, namely Climbers, Campers, and Quitters. Subjects with indicators of fluency, flexibility, originality, and elaboration with the Climbers type were able to solve the questions according to each indicator, the Campers type students were able to solve the questions correctly but were still lacking in preparing answers, and the Quitters type students still did not understand how to solve the questions so that the answer was wrong.


Keywords


Creative Thinking Ability; Adversity Quotient; Quadrilateral and Triangle.

Full Text:

PDF

References


Abidin, J., Rohaeti, E. E., & Afrilianto, M. (2018). Analisis kemampuan berfikir kreatif matematis siswa SMP kelas VIII pada materi bangun ruang. JPMI (Jurnal Pembelajaran Matematika Inovatif), 1(4), 779. https://doi.org/10.22460/jpmi.v1i4.p779-784

Azhari, A., & Somakim, S. (2014). Peningkatan kemampuan berpikir kreatif matematik siswa melalui pendekatan konstruktivisme di kelas VII Sekolah Menengah Pertama (SMP) Negeri 2 banyuasin III. Jurnal Pendidikan Matematika, 8(1). https://doi.org/10.22342/jpm.8.1.992.1-12

Dwi Herdani, P., & Ratu, N. (2018). Analisis tingkat kemampuan berpikir kreatif matematis siswa SMP dalam menyelesaikan open – ended problem pada materi bangun datar segi empat. JTAM | Jurnal Teori Dan Aplikasi Matematika, 2(1), 9. https://doi.org/10.31764/jtam.v2i1.220

Faradillah, A. (2019). Kesulitan calon guru matematika dalam menyelesaikan masalah kemampuan berpikir kreatif berdasarkan tingkat kemampuannya. Prosiding Kolokium Doktor Dan Seminar Hasil Penelitian Hibah, 1(1), 25–41. https://doi.org/10.22236/psd/1125-4159

Fardah, D. K. (2012). Analisis proses dan kemampuan berpikir kreatif siswa dalam matematika melalui tugas open-ended. Kreano: Jurnal Matematika Kreatif-Inovatif, 3(2), 91–99. https://doi.org/10.15294/kreano.v3i2.2616

Fay, D. L. (1967). 済無. Angewandte Chemie International Edition, 6(11), 951–952.

Gunawan, I. (2013). Metode penelitian kualitatif. The Learning University. http://fip.um.ac.id/wp-content/uploads/2015/12/3_Metpen-Kualitatif.pdf

Komarudin, K., Monica, Y., Rinaldi, A., Rahmawati, N. D., & Mutia, M. (2021). Analisis kemampuan berpikir kreatif matematis: dampak model open ended dan adversity quotient (aq). AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(2), 550. https://doi.org/10.24127/ajpm.v10i2.3241

Munahefi, D. N., Kartono, K., Waluya, B., & Dwijanto, D. (2020). Kemampuan berpikir kreatif matematis pada tiap gaya berpikir gregorc. PRISMA, Prosiding Seminar Nasional Matematika, 3, 650–659.

Nadjafikhah, M., & Yaftian, N. (2013). The frontage of creativity and mathematical creativity. Procedia - Social and Behavioral Sciences, 90(InCULT 2012), 344–350. https://doi.org/10.1016/j.sbspro.2013.07.101

Nufus, H., Duskri, M., & Bahrun, B. (2018). Mathematical creative thinking and student self-confidence in the challenge-based learning approach. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 3(2), 57. https://doi.org/10.23917/jramathedu.v3i2.6367

Nugroho, A. A., Nizaruddin, N., Dwijayanti, I., & Tristianti, A. (2020). Exploring students’ creative thinking in the use of representations in solving mathematical problems based on cognitive style. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(2), 202–217. https://doi.org/10.23917/jramathedu.v5i2.9983

Purwanti, D., Fakhri, J., & Negara, H. S. (2019). Analisis tingkat kemampuan berpikir kreatif matematis peserta didik ditinjau dari gaya belajar kelas VII SMP. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 8(1), 91–102. https://doi.org/10.24127/ajpm.v8i1.1733

Purwasih, R. (2019). Kemampuan berpikir kreatif matematis siswa smp dalam menyelesaikan soal pemecahan masalah di tinjau dari adversity quotient tipe climber. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 8(2), 323. https://doi.org/10.24127/ajpm.v8i2.2118

Putra, H. D., Akhdiyat, A. M., Setiany, E. P., & Andiarani, M. (2018). Kemampuan berpikir kreatif matematik siswa smp di cimahi. Kreano, Jurnal Matematika Kreatif-Inovatif, 9(1), 47–53. https://doi.org/10.15294/kreano.v9i1.12473

Stoltz, P. G. (2005). Adversity quotient. Gramedia.

Suhandoyo, G. (2016). Profil kemampuan berpikir kreatif dalam manyelesaikan soal higer order thinking ditinjau dari adversity quotient. MATHEdunesa, 3(5), 156–165.

Suripah, S., & Sthephani, A. (2017). Kemampuan berpikir kreatif matematis mahasiswa dalam menyelesaikan akar pangkat persamaan kompleks berdasarkan tingkat kemampuan akademik. Pythagoras: Jurnal Pendidikan Matematika, 12(2), 149–160. https://doi.org/10.21831/pg.v12i2.16509

Widiastuti, Y., & Putri, R. I. I. (2018). Kemampuan berpikir kreatif siswa pada pembelajaran operasi pecahan menggunakan pendekatan open-ended. Jurnal Pendidikan Matematika, 12(2), 13–22.




DOI: https://doi.org/10.24042/djm.v5i2.12642

Article Metrics

Abstract views : 58 | PDF downloads : 57

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.