PRODAMAS chatbot: Aflask and support vector machine based implementation

Riefyal Arshyza Mustain, Muhammad Muhajir, Pandri Ferdias, Nurirwan Saputra


In accelerated and equitable development in the Kediri City, the Kediri City Government launched the Community Empowerment Program called Prodamas. Prodamas aims to develop and encourage community participation in development at the Neighbourhood Level. To increase the dissemination of information about Prodamas, digital technology can be used as an information service provider. One of them is Chatbot. To develop Chatbots, Natural Language Processing, which is a branch of Artificial Intelligence, has become the most frequently used computer program. This Prodamas chatbot development uses the pattern matching method as an answer search algorithm and Support Vector Machine (SVM) classification as a method to see the machine's level of accuracy in answering questions given by users. Furthermore, the chatbot will be connected to WhatsApp so that it is expected to be able to provide and provide information about Prodamas. The results of testing the chatbot response with new questions provide an accuracy of 79%. Then testing the classification of the new question text with SVM. Obtained an accuracy of 88% with a precision value of 91% and a recall of 88%.


Chatbot; Natural Language Processing; Prodamas; Support Vector Machine

Full Text:



Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, 100006.

Al Maksur, I., & Muhajir, M. (2021). MyBotS Prototype on Social Media Discord with NLP. Baghdad Sci J, 18(1), 753.

Badan Pusat Statistika Kota Kediri. (2020). [Seri 2010] Laju Pertumbuhan PDRB Menurut Lapangan Usaha, Kota Kediri. BPS Kota Kediri.

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189–215.

Daniel, G., Cabot, J., Deruelle, L., & Derras, M. (2020). Xatkit: a multimodal low-code chatbot development framework. IEEE Access, 8, 15332–15346.

Data Reportal. (2022). Digital 2022: Indonesia. indonesia

Dewi, C., & Chen, R.-C. (2019). Random forest and support vector machine on features selection for regression analysis. Int. J. Innov. Comput. Inf. Control, 15(6), 2027–2037.

Dharwadkar, R. A., & Neeta, D. (2018). A medical chatbot. International Journal of Computer Trends and Technol- Ogy (IJCTT), 60(1), 41–45.

Dinas Komunikasi dan Informatika Kota Kediri. (2022). Kota Kediri Berhasil Naikkan Level Smart City Tahun 2021.

Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. 2019 International Conference on Intelligent Sustainable Systems (ICISS), 24–28.

Gowthul Alam, M. M., & Baulkani, S. (2019). Local and global characteristics-based kernel hybridization to increase optimal support vector machine performance for stock market prediction. Knowledge and Information Systems, 60(2), 971–1000.

Juhn, Y., & Liu, H. (2020). Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. Journal of Allergy and Clinical Immunology, 145(2), 463–469.

Ng, V., Rees, E. E., Niu, J., Zaghool, A., Ghiasbeglou, H., & Verster, A. (2020). Application of natural language processing algorithms for extracting information from news articles in event-based surveillance. Canada Communicable Disease Report, 46(6), 186–191.

Niranjan, P. Y., Rajpurohit, V. S., & Malgi, R. (2019). A survey on chat-bot system for agriculture domain. 1st International Conference on Advances in Information Technology (ICAIT), 99–103.

Oguntosin, V., & Olomo, A. (2021). Development of an e-commerce chatbot for a university shopping mall. Applied Computational Intelligence and Soft Computing, 2021, 1–14.

Paul, A., Haque Latif, A., Amin Adnan, F., & Rahman, R. M. (2019). Focused domain contextual AI chatbot framework for resource poor languages. Journal of Information and Telecommunication, 3(2), 248–269.

Pemerintah Kota Kediri. (2018). Selayang Pandang -Pemerintah Kota Kediri.

Pemerintah Kota Kediri. (2020). Peraturan Walikota Kediri Nomor 23 Tahun 2020. Bagian Hukum Pemerintah Kota Kediri.

Pricewaterhouse Coopers. (2013). Future of Government: Tomorrow’s leading public body. PwC.

Qaffas, A. A. (2019). Improvement of Chatbots semantics using wit. ai and word sequence kernel: Education Chatbot as a case study. International Journal of Modern Education and Computer Science, 11(3), 16.

Saraswati, N. W. S., & Indradewi, I. G. A. A. D. (2022). Recognize The Polarity of Hotel Reviews using Support Vector Machine. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(1), 25–36.

Styawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., & Cahyono, R. P. (2022). Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE), 163–167.

Tjiptomongsoguno, A. R. W., Chen, A., Sanyoto, H. M., Irwansyah, E., & Kanigoro, B. (2020). Medical chatbot techniques: a review. Software Engineering Perspectives in Intelligent Systems: Proceedings of 4th Computational Methods in Systems and Software 2020, Vol. 1 4, 346–356.

Wang, B., Zhang, X., Xing, S., Sun, C., & Chen, X. (2021). Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis. ISA Transactions, 118, 207–218



  • There are currently no refbacks.

Copyright (c) 2023 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.