Penjenjangan Kemampuan Berpikir Kritis Matematis Berdasarkan Teori Bloom Ditinjau Dari Kecerdasan Multiple Intelligences

https://doi.org/10.24042/djm.v2i1.3534

Mujib Mujib

Abstract


This study aims to see how the mathematical model of critical thinking skills is based on Bloom theory in terms of Multiple Intelligences intelligence, namely Students have Linguistic Intelligences, Logical-Mathematical and Spatial Intelligence Intelligence. The research method used is descriptive qualitative. Subjects taken in this study were using purpose sampling techniques. Data collection techniques used are tests, questionnaires, observation and interviews. Data analysis was carried out in a qualitative descriptive manner. Each Multiple Intelligences intelligence is capable of observing, understanding, applying, analyzing, evaluating and creating. Based on the tests and interviews the characteristics seen are at the stage of observing, understanding and applying. Not able to analyze, evaluate and be creative. Students who have a tendency to Linguistic Intelligence Intelligence processes the process of critical thinking mathematically has the stages of Lower Order Thinking (LOT). Students who have Spatial Intelligence Intelligence stages of critical thinking skills are mathematical, namely at the stage of observing, understanding, applying analysis and evaluation. At the stage of creation, the characteristics of students are not able. Students who have a tendency for Spatial Intelligence intelligence in the process of mathematical critical thinking skills at the level of Middle Order Thinking (MOT). Students who have the type of Logical-mathematical Intelligence Intelligence stage of critical thinking ability that is the stage of observing, understanding, applying, analyzing, evaluating, and developing. Students who have the type of Logical-mathematical Intelligence tendencies in the process of mathematical critical thinking abilities at the stages of Higher Order Thinking (HOT).


Keywords


Gap Model Mathematical thinking ability, multiple intelligence

Full Text:

PDF

References


Chukwuyenum, A. N. (2013). Impact of Critical thinking on Performance in Mathematics among Senior Secondary School Students in Lagos State. IOSR Journal of Research & Method in Education, 3(5), 18–25.

Cramer, K. A., Post, T. R., & Delmas, R. C. (2002). Initial Fractions Learning by Frouth-and The Fifth-Grades Student: A Comparison of The Effect of Using Commercial Curricula With The Effect of Using The Rational Project Curriculum. Journal for Research in Mathematics Education, 33(2), 111–144.

Depdiknas. (2006). Standar Kompetensi Mata Pelajaran Matematika SMP & MTs. Jakarta: Depdiknas.

Fatmawati, H., Mardiyana, & Triyanto. (2014). Analisis Berpikir Kritis Siswa Dalam Pemecahan Masalah Matematika Berdasarkan Polya pada Pokok Bahasan Persamaan Kuadrat (Penelitian pada Siswa Kelas X SMK Muhammadiyah 1 Sragen Tahun Pelajaran 2013/2014). Jurnal Elektronik Pembelajaran Matematika, 2(9), 911–922.

Gardner, H. (1983). Frames of mind. The theory of multiple intelligences. New York: Basic Book.

Herlina, S., & Dahlia, A. (2018). Analisis Kemampuan Berpikir Kritis Matematis Mahasiswa Calon Guru Ditinjau dari Cognitive Style Berdasarkan Field Independent dan Field Dependent di Universitas Islam Riau. AdMathEdu: Mathematics Education, Mathematics, and Applied Mathematics Journal, 8(1), 35–48.

Huda, N., & Iriani, D. (2015). Analisis Proses Berpikir Kritis Dan Kemampuan Pemecahan Masalah Matematis Matakuliah Matematika Diskrit Mahasiswa Matematika Program Reguler Mandiri FKIP Universitas Jambi. Edumatica: Jurnal Pendidikan Matematika, 5(1).

Kharisma, E. N. (2018). Analisis Kemampuan Berpikir Kritis Matematis Siswa SMK pada Materi Barisan dan Deret. JRPM, 3(1), 62–75.

Mujib, & Mardiyah. (2017). Kemampuan Berpikir Kritis Matematis Berdasarkan Kecerdasan Multiple Intelligences. Al-Jabar : Jurnal Pendidikan Matematika, 8(2), 187–196.

Nursyahidah, F., & Albab, I. U. (2018). Identifikasi Kemampuan Berpikir Kritis Matematis Mahasiswa Berkemampuan Pemecahan Masalah Level Rendah dalam Pembelajaran Kalkulus Integral Berbasis Problem Based Learning.". Jurnal Elemen, 4(1), 34–49.

Pertiwi, W. (2018). Analisis Kemampuan Berpikir Kritis Matematis Peserta Didik Smk Pada Materi Matriks. Jurnal Pendidikan Tambusai, 2(4), 821–831.

Peter, E. E. (2012). Critical thinking: Essence for teaching mathematics and mathematics problem solving skills. African Journal of Mathematics and Computer Science Research, 5(3), 39–43.

Pujiasih, F. (2018). Profil Kemampuan Berpikir Kritis Matematis Siswa Dalam Pemecahan Masalah Soal SPLDV Ditinjau dari Kemampuan Matematika. Jurnal Karya Pendidikan Matematika, 5(2), 9–19.

Putri, A. (2018). Profil Kemampuan Berpikir Kritis Matematis Siswa SMP Kelas VII Materi Bangun Ruang Sisi Datar. Jurnal Pendidikan Tambusai |, 2(4), 793–801.

Putri, F. M., Darmawijoyo, & Susanti, E. (2012). Kemampuan Berpikir Kritis Matematis Siswa Dalam Pembelajaran Matematika Menggunakan Teori Apos. Histogram: Jurnal Pendidikan Matematika, 2(1), 1–11.

Ulva, E. (2018). Profil Kemampuan Berpikir Kritis Matematis Siswa SMP Negeri pada Materi Sistem Persamaan Linier Dua Variabel (SPLDV). Jurnal Pendidikan Tambusai, 2(5), 944–952.

Wijayanti, D. A. I., Pudjawan, K., & Margunayasa, I. G. (2015). Analisis Kemampuan Berpikir Kritis Siswa Kelas V Dalam Pembelajaran IPA di 3 SD Gugus X Kecamatan Buleleng. MIMBAR PGSD Undiksha, 3(1).

Yanti, A. P., & Syazali, M. (2016). Analisis Proses Berpikir Siswa Dalam Memecahkan Masalah Matematika Berdasarkan Langkah-Langkah Bransford dan Stein Ditinjau Dari Adversity Quotient Siswa Kelas X Man 1 Bandar Lampung Tahun 2015/2016. Al-Jabar: Jurnal Pendidikan Matematika, 7(1), 63-74., 7(1), 108–122.

Yaumi, M. (2013). Pembelajaran Berbasis Kecerdasan Jamak (Multiple Intelligences: Mengidentifikasi dan Mengembangkan Multitalenta Anak. Jakarta: Kencana Prenada Media Group.

Zetriuslita, Ariawan, R., & Nufus, H. (2016). Analisis Kemampuan Berpikir Kritis Matematis Mahasiswa Dalam Menyelesaikan Soal Uraian Kalkulus Integral Berdasarkan Level Kemampuan Mahasiswa. Infinity, 5(1), 56–65.




DOI: https://doi.org/10.24042/djm.v2i1.3534

Article Metrics

Abstract views : 334 | PDF downloads : 242

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.