Wilkinson Polynomials: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative


Vera Mandailina, Syaharuddin Syaharuddin, Dewi Pramita, Malik Ibrahim, Habib Ratu Perwira Negara


Some of the numeric methods for solutions of non-linear equations are taken from a derivative of the Taylor series, one of which is the Newton-Raphson method. However, this is not the only method for solving cases of non-linear equations. The purpose of the study is to compare the accuracy of several derivative methods of the Taylor series of both single order and two-order derivatives, namely Newton-Raphson method, Halley method, Olver method, Euler method, Chebyshev method, and Newton Midpoint Halley method. This research includes qualitative comparison types, where the simulation results of each method are described based on the comparison results. These six methods are simulated with the Wilkinson equation which is a 20-degree polynomial. The accuracy parameters used are the number of iterations, the roots of the equation, the function value f (x), and the error. Results showed that the Newton Midpoint Halley method was the most accurate method. This result is derived from the test starting point value of 0.5 to the equation root x = 1, completed in 3 iterations with a maximum error of 0.0001. The computational design and simulation of this iterative method which is a derivative of the two-order Taylor series is rarely found in college studies as it still rests on the Newton-Raphson method, so the results of this study can be recommended in future learning.


Wilkinson Polynomials; Taylor Series; Newton-Raphson; Halley; Olver; Euler; Chebyshev; and Newton Midpoint Halley

Full Text:



Alexandrov, S. (2018). Numerical method. In SpringerBriefs in Applied Sciences and Technology (pp. 61–80). https://doi.org/10.1007/978-981-10-5227-9_5

Bakery, A. A., & Elmatty, A. R. A. (2017). Non linear difference equation of orlicz type. Journal of Computational and Theoretical Nanoscience, 14(1), 306–313. https://doi.org/10.1166/jctn.2017.6321

D. A. Pratamasyari, Silalahi, B. P., & Guritman, S. (2017). Kombinasi Varian Metode Newton dan Metode Halley untuk Menyelesaikan Persamaan Tak Linear. Journal of Mathematics and Its Applications, 16(2), 1–14.

Darmawan, R. N., & Zazilah, A. N. (2019). Perbandingan Metode Halley dan Olver dalam Penentuan Akar-akar Penyelesaian Polinomial Wilkinson. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(2), 93–97.

Hakim, L., & Habibi, A. R. (2016). Perbandingan Skema Numerik Metode Finite Difference dan Spectral. Jurnal Ilmiah Teknologi Informasi Asia, 10(2), 34–40.

Hasa, R., & Radoš, R. (2015). Numerical matlab solvers in automotive simulation. APLIMAT 2015 - 14th Conference on Applied Mathematics, Proceedings, 346–356.

Krag, B. (2017). Modeling and simulation-basics and benefits. In In-Flight Simulators and Fly-by-Wire/Light Demonstrators: A Historical Account of International Aeronautical Research (pp. 19–25). https://doi.org/10.1007/978-3-319-53997-3_3

Lim, H. C., Shin, H. S., Lim, H. C., & Shin, H. S. (2013). Non–Equation-Based Models. In Fed-Batch Cultures (pp. 121–134). https://doi.org/10.1017/cbo9781139018777.008

Negara, Habib Ratu Perwira; Kurniawati, Kiki, R. S. (2018). Design GUI of simulation and numerical solution of equation and non linier equation systems. Jurnal Riset Teknologi Dan Inovasi Pendidikan (JARTIKA), 1(2), 90–98.

Nur, A. M. (2018). Pengaruh Aplikasi C# dalam Proses Perhitungan Numerik Terhadap Solusi Persamaan Non Linier. Jurnal Informatika Dan Teknologi, 1, 82.

Schmidt, J. D. (2010). Numerical simulation of optical wave propagation: With examples in MATLAB. In Numerical Simulation of Optical Wave Propagation: With Examples in MATLAB. https://doi.org/10.1117/3.866274

Tentua, M. N. (2017). Aplikasi Analisis Tingkat Akurasi Penyelesaian Persamaan Non Linier Dengan Metode Biseksidan Metode Newton Raphson. Jurnal Dinamika Informatika, 6(2), 113–132.

Wigati, J. (2017). Solusi Numerik Persamaan Non-Linier Dengan Metode Bisection dan Regula Falsi. G-Tech : Jurnal Teknologi Terapan, 1(1), 5–17. Retrieved from http://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/262

Wilson, C. L. (2011). Mathematical modeling, clustering algorithms and applications. In Mathematical Modeling, Clustering Algorithms and Applications.

DOI: https://doi.org/10.24042/djm.v3i2.6134

Article Metrics

Abstract views : 47 | PDF downloads : 27


  • There are currently no refbacks.

Copyright (c) 2020 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.