The Effectiveness of Remediation Learning Strategy in Reducing Misconceptions on Chemistry: A Systematic Review

https://doi.org/10.24042/tadris.v7i1.11140

Kafita Krisnatul Islamiyah, Sri Rahayu, I Wayan Dasna

Abstract


Misconceptions are defined as wrong ideas or views of a person's concept different from the scientific concepts formulated by experts in their field. It must be reduced immediately so as not to hinder the process of understanding the next interconnected matter. Reducing students' misconceptions can be done through remedial learning. This study aimed to describe the phase in processing information that causes students' misconceptions based on learning theory, describe the implementation of an effective remedial learning strategy to reduce misconceptions in chemistry, and describe learning media that can be integrated into remedial learning in chemistry. The method used in this study was the systematic literature review (SLR) by searching articles on the electronics journal database. The database used in this study was ERIC, Google Scholar, and Sinta from 2011 to 2021. Seventeen articles were found in 14 indexed journals (Scopus and Sinta). The data was analyzed by collecting the related articles, reducing them based on the research focus, displaying the data, and concluding. The result showed that students build their understanding through assimilation and accommodation. The disequilibrium between both of these aspects causes a misconception. It must be reduced immediately through remedial learning. Six remedial learning strategies can reduce misconceptions in chemistry effectively, i.e., POE, Guided Inquiry, MRCD, Ember, Conceptual Learning, and ECIRR. This effectiveness is due to the phase of creating cognitive conflict. Integrating Information and Communication Technology (ICT) interactive media in implementing remedial learning strategies has a positive impact because interactive media can visualize abstract concepts. Hence, the cognitive accommodation phase is more effective.

Keywords


Chemistry learning; Cognitive conflict; Misconceptions; Remediation learning

Full Text:

PDF

References


Aprilia, I. N., & Suyono, S. (2016). Penerapan strategi conceptual change dengan analogi untuk mereduksi miskonsepsi ikatan kimia berbasis model mental atribut imajinasi. UNESA Journal of Chemical Education, 5(2), 408–416.

Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. In Misconceptions in Chemistry. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70989-3

Chan, C. K. Y., & Luo, J. (2021). A four-dimensional conceptual framework for student assessment literacy in holistic competency development. Assessment & Evaluation in Higher Education, 46(3), 451–466. https://doi.org/10.1080/02602938.2020.1777388

Chang, R., & Overby, J. (2019). General chemistry (13th ed.). McGraw-Hill Education.

Chi, M. T. H. (2017). Two kinds and four sub-types of misconceived knowledge, ways to change it, and the learning outcomes. In International Handbook of Research on Conceptual Change Routledge. Routledge.

Coştu, B., Ayas, A., & Niaz, M. (2012). Investigating the effectiveness of a POE-based teaching activity on students’ understanding of condensation. Instructional Science, 40(1), 47–67. https://doi.org/10.1007/s11251-011-9169-2

Dhindsa, H. S., & Treagust, D. F. (2012). Conceptual understanding of Bruneian tertiary students: Chemical bonding and structure. Brunei International Journal Os Science & Mathematic Education, 1(1), 33–51.

Durmaz, M. (2018). Determination of prospective chemistry teachers’ cognitive structures and misconceptions about stereochemistry. Journal of Education and Training Studies, 6(9), 13. https://doi.org/10.11114/jets.v6i9.3353

Erman, E. (2017). Factors contributing to students’ misconceptions in learning covalent bonds. Journal of Research in Science Teaching, 54(4), 520–537. https://doi.org/10.1002/tea.21375

Erna, M, Susulawati, S., & Ramadani, R. (2020). Reducing senior high school students’ misconceptions through inquiry learning model on thermochemistry material. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah, 5(1), 43–54.

Erna, Maria, Anwar, L., & Mazidah, M. (2021). Interactive e-module using Zoom Cloud Meeting platform to reduce misconceptions on salt hydrolysis material. Journal of Education and Learning (EduLearn), 15(2), 283–290. https://doi.org/10.11591/edulearn.v15i2.18460

Fariki, M. iqbal Al, & Novita, D. (2021). Development of worksheets to reduce misconception with a conceptual change text stretegy on reaction rate factors muhammad. Jurnal Pendidikan Dan Pembelajaran Kimia, 10(1), 76–87. https://doi.org/10.23960/jppk.v.10.i1.April

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809

Hariyadi, D., Ibrohim, & Rahayu, S. (2016). Pengaruh model pembelajaran inkuiri terbimbing berbasis lingkungan terhadap keterampilan proses dan penguasaan konsep ipa siswa kelas vii pada materi ekosistem. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 1(8), 1567–1574. https://doi.org/10.17977/jptpp.v1i8.8891

Haryati, S., & Oktaviani, A. (2021). Process oriented guided inquiry learning dalam mereduksi miskonsepsi siswa SMA pada materi kesetimbangan kelarutan. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 9(1), 1–12.

Harza, A. E. K. P., Wiji, W., & Mulyani, S. (2021). Potency to overcome misconceptions by using multiple representations on the concept of chemical equilibrium. Journal of Physics: Conference Series, 1806(1). https://doi.org/10.1088/1742-6596/1806/1/012197

Hastuti, W., Suyono, S., & Poedjiastoeti, S. (2014). Reduksi miskonsepsi siswa pada konsep reaksi redoks melalui model ECIRR. Jurnal Penelitian Pendidikan Kimia: Kajian Hasil Penelitian Pendidikan Kimia, 1(1), 78–86. https://doi.org/10.36706/jppk.v1i1.2387

Ibrahim, M. (2012). Seri pembelajaran inovatif: Konsep, miskonsepsi, dan cara pembelajarannya. Unesa University Press.

Ilyas, A., & Saeed, M. (2018). Exploring teachers’ understanding about misconceptions of secondary grade chemistry students. International Journal for Cross-Disciplinary Subjects in Education, 9(1), 3323–3328. https://doi.org/10.20533/ijcdse.2042.6364.2018.0444

Irwandani, I. (2015). Pengaruh model pembelajaran generatif terhadap pemahaman konsep fisika pokok bahasan bunyi peserta didik MTs Al-Hikmah Bandar Lampung. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 4(2), 165–177. https://doi.org/10.24042/jpifalbiruni.v4i2.90

Islamiyah, K. K., Sukarmin, & Yonata, B. (2019). The development of anti missoli software to reduce misconception using conceptual change text strategy in solubility equilibria. UNESA Journal of Chemical …, 8(3), 361–368.

Jegede, & Akingbade, S. (2013). Students’ perception of the availability and utilization of information and communication technology (ICT) in the teaching and learning of science subjects in secondary schools in Ekiti State, Nigeria. International Journal of Education and Literacy Studies, 1(1), 94–99. https://doi.org/10.7575/aiac.ijels.v.1n.1p.94

Johnstone, A. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

Jusniar, Effendy, E., Budiasih, E., & Sutrisno, S. (2020). Eliminating misconceptions on reaction rate to enhance conceptual understanding of chemical equilibrium using EMBE-R strategy. International Journal of Instruction, 14(1), 85–104. https://doi.org/10.29333/IJI.2021.1416A

Jusniar, M., Budiasih, E., Effendi, & Sutrisno. (2019). The misconception of stoichiometry and its impact on the chemical equilibrium. 1st International Conference on Advanced Multidisciplinary Research, 227, 138–141. https://doi.org/10.2991/icamr-18.2019.35

Khandagale, V. S., & Shinde, A. V. (2021). Investigation of misconceptions for valency and chemical bonding among high school students. Online Submission, 8(3), 539–544.

Khomaria, I. N., & Nasrudin, H. (2016). Penerapan model pembelajaran ecirr untuk mereduksi miskonsepsi pada materi kesetimbangan kimia kelas XI MIA di SMA Negeri 1 Pacet. Unesa Journal of Chemical Education, 5(1), 98–106.

Kibirige, I., Osodo, J., & Tlala, K. M. (2014). The effect of predict-observe-explain strategy on learners’ misconceptions about dissolved salts. Mediterranean Journal of Social Sciences, 5(4), 300–310. https://doi.org/10.5901/mjss.2014.v5n4p300

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

Löfgren, S., Ilomäki, L., & Toom, A. (2020). Employer views on upper-secondary vocational graduate competences. Journal of Vocational Education & Training, 72(3), 435–460. https://doi.org/10.1080/13636820.2019.1635633

Lu, S., Bi, H., & Liu, X. (2018). The effects of explanation-driven inquiry on students’ conceptual understanding of redox. International Journal of Science Education, 40(15), 1857–1873. https://doi.org/10.1080/09500693.2018.1513670

Maratusholihah, N. F., Rahayu, S., & Fajaroh, F. (2017). Analisis miskonsepsi siswa sma pada materi hidrolisis garam dan larutan penyangga. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 2(7), 919–926. https://doi.org/10.17977/jptpp.v2i7.9645

Morris, T. H. (2020). Experiential learning – a systematic review and revision of Kolb’s model. Interactive Learning Environments, 28(8), 1064–1077. https://doi.org/10.1080/10494820.2019.1570279

Mulyadi. (2010). Diagnosis kesulitan belajar dan bimbingan terhadap kesulitan belajar khusus. Nuha Litera.

Nada, E. I., Susilaningsih, E., Mursiti, S., Drastisianti, A., Alawiyah, N., & Supartono. (2019). Instrument design of remedy test assisted by multiple representations using computer-based test model on redox materials. Journal of Physics: Conference Series, 1321(2), 022043. https://doi.org/10.1088/1742-6596/1321/2/022043

Nasrudin, H., & Azizah, U. (2020). Overcoming studentâ€TM s misconception through implementation of metacognitive skills-based instructional materials in energetics. Jurnal Pendidikan IPA Indonesia, 9(1), 125–134. https://doi.org/10.15294/jpii.v9i1.

Ozmen, H., & Naseriazar, A. (2018). Effect of simulations enhanced with conceptual change texts on university students’ understanding of chemical equilibrium. Journal of the Serbian Chemical Society, 83(1), 121–137. https://doi.org/10.2298/JSC161222065O

Pabuccu, A., & Geban, O. (2012). Students’ conceptual level of understanding on chemical bonding. International Online Journal of Educational Sciences, 4(3), 563–580.

Páez, T. M., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Posner, George, J., Kenneth A, S., Peter W, H., & William A, G. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

Praswidiarini, D., & Suyono, S. (2015). Implementation of analogy strategy reinforced using experiment to prevent students’misconception on acid and base concept. UNESA Journal of Chemical Education, 4(3), 532–540.

Rizqiyah, I. S., Sutoyo, S., & Yuanita, L. (2020). Conception profile of students in class XI.1 science on chemical equilibrium materials with pogil learning model to reduce misconception. International Journal of Innovative Science and Research Technology, 5(9), 681–687. https://doi.org/10.38124/ijisrt20sep294

Rohmah, R. S., & Virtayanti, I. A. (2021). Effectiveness of conceptual change text in reducing acid-base misconceptions. JTK (Jurnal Tadris Kimiya), 6(1), 36–42. https://doi.org/10.15575/jtk.v6i1.9870

Saputra, H., Halim, A., & Khaldun, I. (2013). Upaya mengatasi miskonsepsi siswa melalui model pembelajaran children learning in science (CLIS) berbasis simulasi komputer pada pokok bahasan listrik dinamis. Jurnal Pendidikan Sains Indonesia, 1(1), 12–21. https://doi.org/10.24815/jpsi.v1i1.979

Saregar, A., Sunarno, W., & Cari, C. (2013). Pembelajaran fisika kontekstual melalui metode eksperimen dan demonstrasi diskusi menggunakan multimedia interaktif ditinjau dari sikap ilmiah dan kemampuan verbal siswa. INKUIRI: Jurnal Pendidikan IPA, 2(2), 100–113. https://doi.org/10.20961/inkuiri.v2i02.9754

Sendur, G., & Toprak, M. (2013). The role of conceptual change texts to improve students’ understanding of alkenes. Chemistry Education Research and Practice, 14(4), 431–449. https://doi.org/10.1039/c3rp00019b

Sirhan, G. (2007). Learning difficulties in chemistry: An overview. Journal of Turkish Science Education, 4(2), 2–20.

Slavin, R. E. (2019). Educational psychology: Theory and practice. Pearson Education, Inc.

Sudjana, N., & Rivai, A. (2005). Media pengajaran. Sinar Baru Algensindo.

Suparno, P. (2013). Miskonsepsi dan perubahan konsep dalam pendidikan fisika. Grasindo.

Suparno, Paul. (2013). Miskonsepsi dan perubahan konsep dalam pendidikan fisika (2nd ed.). Gramedia.

Susilowati, D., Sukarmin, & Mitarlis. (2019). The development of student misconceptions detection and reduction software in reaction rate material with conceptual change text strategy. UNESA Journal of Chemical Education, 8(3), 369–379.

Tas, E., Gulen, S., Oner, Z., & Ozyurek, C. (2015). The effects of classic and web-designed conceptual change texts on the subject of water chemistry. International Electronic Journal of Elementary Education, 7(2), 263–280.

Treagust, D. F. (2006). Diagnostic assessment in science as a means to improving teaching, learning and retention. Proceedings of The Australian Conference on Science and Mathematics Education.

Tsaparlis, G., Pappa, E. T., & Byers, B. (2018). Teaching and learning chemical bonding: research-based evidence for misconceptions and conceptual difficulties experienced by students in upper secondary schools and the effect of an enriched text. Chemistry Education Research and Practice, 19(4), 1253–1269. https://doi.org/10.1039/c8rp00035b

Uyulgan, M. A., & Güven, N. A. (2021). Linking the representation levels to a physical separation and purification method in chemistry: Understanding of distillation experiment. Journal of Pedagogical Research, 5(3), 80–104. https://doi.org/10.33902/JPR.2021370703

Widarti, H. R., Permanasari, A., & Mulyani, S. (2017). Undergraduate students’ misconception on acid-base and argentometric titrations: a challenge to implement multiple representation learning model with cognitive dissonance strategy. International Journal of Education, 9(2), 105. https://doi.org/10.17509/ije.v9i2.5464

Widarti, H. R., Permanasari, A., Mulyani, S., Rokhim, D. A., & Habiddin. (2021). Multiple representation-based learning through cognitive dissonance strategy to reduce student’s misconceptions in volumetric analysis. TEM Journal, 10(3), 1263–1273. https://doi.org/10.18421/TEM103-33

Widiarti, H. R., Permanasari, A., & Mulyani, S. (2016). Student misconception on redox titration (a challenge on the course implementation through cognitive dissonance based on the multiple representations). Jurnal Pendidikan IPA Indonesia, 5(1), 56–62. https://doi.org/10.15294/jpii.v5i1.5790

Yuliastini, I. B., Rahayu, S., Fajaroh, F., & Mansour, N. (2018). Effectiveness of pogil with ssi context on vocational high school students’ chemistry learning motivation. Jurnal Pendidikan IPA Indonesia, 7(1), 85–95. https://doi.org/10.15294/jpii.v7i1.9928

Zakiyah, I., Widodo, W., & Tukiran, T. (2019). Implementation of predict-observe-explain (POE) strategy to reduce misconception in thermochemistry. International Journal for Educational and Vocational Studies, 1(7), 754–759. https://doi.org/10.29103/ijevs.v1i7.1757




DOI: https://doi.org/10.24042/tadris.v7i1.11140

Article Metrics

Abstract views : 284 | PDF downloads : 89

Refbacks





Creative Commons License

Tadris: Jurnal Keguruan dan Ilmu Tarbiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Universitas Islam Negeri Raden Intan Lampung. All rights reservedp-ISSN 2301-7562e-ISSN 2579-7964