FMCE-PHQ-9 Assessment with Rasch Model in Detecting Concept Understanding, Cheating, and Depression amid the Covid-19 Pandemic

Fauzan Sulman, Sutopo Sutopo, Sentot Kusairi


This research aims to see the ability of the FMCE-PHQ-9 test instrument amid the Covid-19 pandemic to measure conceptual understanding, cheating, and depression in students. The research was conducted on 64 physics education students at Sulthan Thaha Saifuddin State Islamic University Jambi. The instrument consists of 47 force and motion material items to fit the Winsteps 3.65.0 program. The analysis results using the Rasch Model showed that the MNSQ Outfit was 1.00 in the person column and 0.1 in the item column. Judging from the ZSTD value of 0.57 for the person and 0.1 for the item, the Points Measure value correlated with 0.4 to 0.85 while the item reliability value was 0.73 and the Cronbach's Alpha value was 0.56. therefore, the test instrument using the Rasch proclamation model found 31 fit items. The analysis results show that the concept ability was poor since, on average, the students could only answer questions with a low index of difficulty category. The research results on the level of cheating obtained data that 100 percent of students were not indicated to have the same pattern. Lastly, for the level of depression, only 16 percent of students did not experience depression, while 84 percent of students experienced it.


Cheat detector; Concept understanding; Depression detection FMCE-PHQ-9 instrument; Rasch models

Full Text:



Andrich, D., & Pedler, P. (2019). A law of ordinal random error: The Rasch measurement model and random error distributions of ordinal assessments. Measurement: Journal of the International Measurement Confederation, 131, 771–781.

Chang, T. Y., Hong, G., Paganelli, C., Phantumvanit, P., Chang, W. J., Shieh, Y. S., & Hsu, M. L. (2020). Innovation of dental education during COVID-19 pandemic. Journal of Dental Sciences, 16(1), 15–20.

Detel, W. (2015). Social constructivism. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition (Second Edi, Vol. 22). Elsevier.

Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. In Computers and Education (Vol. 142). Elsevier Ltd.

Gordon, R. A., Peng, F., Curby, T. W., & Zinsser, K. M. (2021). An introduction to the many-facet Rasch model as a method to improve observational quality measures with an application to measuring the teaching of emotion skills. Early Childhood Research Quarterly, 55, 149–164.

Ho, P. (2019). A new approach to measuring overall liking with the many-facet rasch model. Food Quality and Preference, 74, 100–111.

Holbrook, A. I., & Kasales, C. (2020). Advancing competency-based medical education through assessment and feedback in breast imaging. Academic Radiology, 27(3), 442–446.

Honey, M. A., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research. In STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research.

Kusairi, S. (2013). Analisis asesmen formatif fisika SMA berbantuan komputer. Jurnal Penelitian Dan Evaluasi Pendidikan, 16(3), 68–87.

Lavasani, M. G., Mirhosseini, S., & Hejazi, E. (2011). The effect of self-regulation learning strategies training on the academic motivation and self-efficacy. Procedia - Social and Behavioral Sciences, 29, 627–632.

Levis, B., Benedetti, A., & Thombs, B. D. (2019). Accuracy of patient health questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. The BMJ, 365.

Liaupsin, C. J. (2002). The comprehensive evaluation of a self-instructional program on functional behavioral assessment. Journal of Special Education Technology, 17(3), 5–25.

Lu, Z., Vincent, J. I., & MacDermid, J. C. (2021). Evaluation of the structural validity of the work instability scale using the rasch model. Archives of Rehabilitation Research and Clinical Translation, 3(1), 100103.

Malone, K. L. (2008). Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Physical Review Special Topics - Physics Education Research, 4(2), 1–15.

Mamat, M. N., Maidin, P., & Mokhtar, F. (2014). Simplified reliable procedure for producing accurate student’s ability grade using rasch model. Procedia - Social and Behavioral Sciences, 112(Iceepsy 2013), 1077–1082.

Manda Negara, I., & Hidayati, N. (2021). The Development of assessment instrument to assess implementation of work-based learning, and learning innovation skills. Jurnal Iqra’: Kajian Ilmu Pendidikan, 6(1), 1–13.

Mishra, L., Gupta, T., & Shree, A. (2020). Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. International Journal of Educational Research Open, In press, 100012.

Mozaffari, H., Siassi, F., Guilani, B., Askari, M., & Azadbakht, L. (2020). Association of dietary acid-base load and psychological disorders among Iranian women: A cross-sectional study. Complementary Therapies in Medicine, 53, 102503.

Ozkazanc, S., & Yuksel, U. D. (2015). Evaluation of disaster awareness and sensitivity level of higher education students. Procedia - Social and Behavioral Sciences, 197, 745–753.

Patrick, S., & Connick, P. (2019). Psychometric properties of the PHQ-9 depression scale in people with multiple sclerosis: a systematic review. PLoS ONE, 14(2), 1–12.

Platto, S., Wang, Y., Zhou, J., & Carafoli, E. (2020). History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochemical and Biophysical Research Communications, 538, 14–23.

Ponkilainen, V. T., Miettinen, M., Sandelin, H., Lindahl, J., Häkkinen, A. H., Toom, A., Tillgren, T., Ilves, O., Latvala, A. O., Ahonen, K., Sirola, T., Sampo, M., Väistö, O., & Repo, J. P. (2021). Structural validity of the finnish manchester-oxford foot questionnaire (MOXFQ) using the rasch model. Foot and Ankle Surgery, 27(1), 93–100.

Putra, M. I. J., Junaid, M., & Sulman, F. (2021). The ability of the question and answer (Q&A) method with the help of learning videos against student learning outcomes amid the Covid-19 pandemic. EDUKATIF: Jurnal Ilmu Pendidikan, 3(5), 2160–2169.

Rabbitt, M. P. (2018). Causal inference with latent variables from the Rasch model as outcomes. Measurement: Journal of the International Measurement Confederation, 120, 193–205.

Ramlo, S. (2008). Validity and reliability of the force and motion conceptual evaluation. American Journal of Physics, 76(9), 882–886.

Reed, D. K., Martin, E., Hazeltine, E., & McMurray, B. (2020). Students’ perceptions of a gamified reading assessment. Journal of Special Education Technology, 35(4), 191–203.

Ryckman, T. (2015). Why history matters to philosophy of physics. Studies in History and Philosophy of Science Part A, 50(1), 4–12.

San Martín, E., & Rolin, J. M. (2013). Identification of parametric Rasch-type models. Journal of Statistical Planning and Inference, 143(1), 116–130.

Scott, T. F., & Schumayer, D. (2017). Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data. Physical Review Physics Education Research, 13(1), 1–12.

Scoulas, J. M., Aksu Dunya, B., & De Groote, S. L. (2021). Validating students’ library experience survey using rasch model. Library and Information Science Research, 43(1), 101071.

Shute, V. J., & Rahimi, S. (2021). Stealth assessment of creativity in a physics video game. Computers in Human Behavior, 116, 106647.

Smith, T. I., & Wittmann, M. C. (2008). Applying a resources framework to analysis of the force and motion conceptual evaluation. Physical Review Special Topics-Physics Education Research, 4(2), 1–12.

Sofiuddin, M. B., Kusairi, S., & Sutopo, S. (2018). Analisis penguasaan konsep siswa SMA pada materi fluida statis. Jurnal Pendidikan - Teori, Penelitian, Dan Pengembangan, 3(7), 955–961.

Sremcev, N., Lazarevic, M., Krainovic, B., Mandic, J., & Medojevic, M. (2018). Improving teaching and learning process by applying Lean thinking. Procedia Manufacturing, 17, 595–602.

Sri Hastuti, I. M. (2021). Model asesmen alternatif dalam evaluasi pembelajaran di era pandemi Covid-19. Tadarus Tarbawy, 3(1), 280–290.

Sudaryanto, S., Widayati, W., & Amalia, R. (2020). Konsep merdeka belajar-kampus merdeka dan aplikasinya dalam pendidikan bahasa (dan sastra) Indonesia. Kode: Jurnal Bahasa, 9(2), 78–93.

Sulman, F. (2019). Application of cooperative problem posing and prior motivation towards students learning outcomes. Indonesian Journal of Educational Research (IJER), 4(2), 93–96.

Sulman, F., Habibi, M., & Zb, A. (2021). Pengaruh media animasi berkarakter islami terhadap hasil belajar pengetahuan bumi dan antariksa. Edumaspul: Jurnal Pendidikan, 5(1), 135–146.

Sulman, F., Taqwa, M. R. A., Aminah Zb, A. Z., Rafzan, R., & Fikri, A. (2020). The effect of mathematical connections on the mastery of Pprobability material. Edumatika : Jurnal Riset Pendidikan Matematika, 3(2), 147.

Tatus, S., Rospects, P., Genda, A. N. A., & Esearch, F. O. R. R. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press.

Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316.

Thornton, R. K., & Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66(4), 338–352.

Tristiantari, N. K. D. (2019). Pengembangan bahan ajar tematik bermuatan folklor bali. Journal of Education Technology, 2(3), 128.

Wang, M., Zhao, Q., Hu, C., Wang, Y., Cao, J., Huang, S., Li, J., Huang, Y., Liang, Q., Guo, Z., Wang, L., Ma, L., Zhang, S., Wang, H., Zhu, C., Luo, W., Guo, C., Chen, C., Chen, Y., … Yang, Y. (2021). Prevalence of psychological disorders in the COVID-19 epidemic in China: A real world cross-sectional study. Journal of Affective Disorders, 281, 312–320.

Watts, E. H., O’Brian, M., & Wojcik, B. W. (2003). Four models of assistive technology consideration: how do they compare to recommended educational assessment practices? Journal of Special Education Technology, 19(1), 43–56.

Wells, J., Henderson, R., Traxler, A., Miller, P., & Stewart, J. (2020). Exploring the structure of misconceptions in the force and motion conceptual evaluation with modified module analysis. Physical Review Physics Education Research, 16(1).

Wijayanti, E., & Mundilarto, M. (2015). Pengembangan instrumen asesmen diri dan teman sejawat kompetensi bidang studi pada mahasiswa. Jurnal Penelitian Dan Evaluasi Pendidikan, 19(2), 129–144.

Xiao, Y., & Yang, M. (2019). Formative assessment and self-regulated learning: How formative assessment supports students’ self-regulation in English language learning. System, 81, 39–49.

Zb, A., Setiawan, M. E., & Sulman, F. (2020). Pengaruh e-learning berbasis schoology berbantuan whatsApp group terhadap hasil belajar ditengah pandemi covid-19. Al-Khidmah, 1(1), 55–60.

Zehirlioglu, L., & Mert, H. (2020). Validity and reliability of the heart disease fact questionnaire (HDFQ): A Rasch measurement model approach. Primary Care Diabetes, 14(2), 154–160.



  • There are currently no refbacks.

Creative Commons License

Tadris: Jurnal Keguruan dan Ilmu Tarbiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licensep-ISSN 2301-7562e-ISSN 2579-7964