Determination of Dielectric Constants through Capacitor Measurement Using Variations in Thickness, Area, Materials, and Density
DOI:
https://doi.org/10.24042/jipfalbiruni.v13i1.16134Keywords:
Capacitance, Capacitor’s learning media, Dielectric constantAbstract
In this study, the researchers focused on testing experimental media from Yeti Rusmiati to measure the dielectric constant of capacitors, with variations in thickness, surface area, material, and density. The experimental results show that the thicker the dielectric material, the smaller the capacitance value. This applies to all materials tested, namely mica, silicon, and duplex paper, with errors from largest to smallest being 24.97% duplex, 7.27% mica, and 0% silicon. Measuring the capacitance of parallel plate capacitors with variations in plate area from GRC gypsum, silicon rubber, and mica, it was found that the error from largest to smallest is mica 11.56%. In comparison, silicon rubber and GRC gypsum have an error of 0%. Measurement of capacitance by varying the dielectric material shows that the capacitance value of the capacitor is proportional to the dielectric constant of the material. Among all the 12 materials tested, the highest dielectric constant is banana leaves with a value of ? = 12.6 and the smallest flannel with a value of ? = 1.02. In contrast, the variation in density shows that the greater the density, the greater the dielectric constant, from the largest to the smallest, the variation in density of leaves steamed with fire, fresh leaves 1 x 24 hours, and dry leaves heated with the sun, respectively 67.51;22.96; 16.57. It can be concluded that Yeti Rusmiati's media can be used in measuring dielectric constant with variations in thickness, area, density, and dielectric material in learning capacitors.References
Afzal, A., Mousavi, S. F., & Khadem, M. (2010). Estimation of leaf moisture content by measuring the capacitance. Journal of Agricultural Science and Technology, 12(3), 339–346.
Clipper Control Inc. (2022). Dielectric Constant Values. https://www.clippercontrols.com/pages/Dielectric-Constant-Values.html
de Sousa, F. F., da Silva, L. D. P., & Freitas, K. H. G. (2017). Electrical and dielectric properties of water. Scientia Plena, 13(1), 1-6.
Ekayani, P. (2017). Pentingnya penggunaan media pembelajaran untuk meningkatkan prestasi belajar siswa. Jurnal Fakultas Ilmu Pendidikan Universitas Pendidikan Ganesha Singaraja, 2(1), 1–11.
Grove, T. T., Masters, M. F., & Miers, R. E. (2005). Determining dielectric constants using a parallel plate capacitor. American Journal of Physics, 73(1), 52–56.
Gunasekaran, S., Natarajan, R. K., Kala, A., & Jagannathan, R. (2008). Dielectric studies of some rubber materials at microwave frequencies, Indian Journal of Pure & Applied Physics, 46(1), 733-737.
Halliday, D., Resnick, R., & Walker, J. (2013). Fundamentals of physics. John Wiley & Sons.
Jh, T. S. (2018). Pengembangan e-modul berbasis web untuk meningkatkan pencapaian kompetensi pengetahuan fisika pada materi listrik statis dan dinamis SMA. WaPFi (Wahana Pendidikan Fisika), 3(2), 51–61.
Jumingin, J., & Setiawati, S. (2016). Kajian ketebalan tanah liat sebagai bahan dielektrik kapasitor plat sejajar. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 13(1), 22-26.
Kemendikbudristek. (2022). Capaian pembelajaran pada pendidikan anak usia dini, jenjang pendidikan dasar, dan jenjang pendidikan menengah pada kurikulum merdeka.
Lestari, V. A., & Priambodo, T. B. (2020). Kajian komposisi lignin dan selulosa dari limbah kayu sisa dekortikasi rami dan cangkang kulit kopi untuk proses gasifikasi downdraft. Jurnal Energi Dan Lingkungan (Enerlink), 16(1), 1–8.
Lide, D. R. (2004). CRC Handbook of Chemistry and Physics 85th Ed CRC Press. Boca Raton, 8–141.
Mandrić Radivojević, V., Rupčić, S., Srnović, M., & Benšić, G. (2018). Measuring the dielectric constant of paper using a parallel plate capacitor. International Journal of Electrical and Computer Engineering Systems, 9(1), 1–10.
Meiliyadi, L. A. D., Wahyudi, M., Damayanti, I., & Fudholi, A. (2022). Morphological characteristics and electrical properties analysis of silica based on river and coastal iron sand. J. Ilm. Pendidik. Fis. Al-Biruni, 11(1), 129–140.
Mustata, F. S. C., & Mustata, A. (2014). Dielectric behaviour of some woven fabrics on the basis of natural cellulosic fibers. Advances in Materials Science and Engineering, 2014(2), 1-8.
Nurmasyitah, N. (2017). Penentuan konstanta dielektrik akrilik. Jurnal Jeumpa, 4(2), 50–54.
Pattar, U. (2014). An innovative approach to determine the dielectric constant of a solid. Latin-American Journal of Physics Education, 8(4), 18.
Pertiwi, P. K. (2016). PLAT KAPASITOR (L7). Retrieved February 20, 2023, from PLAT_KAPASITOR_-_PUJI_K._P_-_1113100101-with-cover-page-v2.pdf (d1wqtxts1xzle7.cloudfront.net)
Rusmiati, Y., Viridi, S., & Khotimah, S. N. (2016). Eksperimen Penentuan Konstanta Dielektrik Akrilik Dengan Menggunakan Prinsip Kerja Kapasitor Plat Sejajar.
Santo, H., Johan, V. S., Zalfiatri, Y., & Nopiani, Y. (2023). Karakteristik fisikokimia briket arang batang kelapa sawit dengan penambahan arang tempurung kelapa. Sagu: Agriculture Science and Technology Journal, 22(1), 32-37
Sacilik, K., Tarimci, C., & Colak, A. (2006). Dielectric properties of flaxseeds as affected by moisture content and bulk density in the radio frequency range. Biosystems Engineering, 93(2), 153–160.
Serway, R. A., & Jewett, J. W. (2018). Physics for scientists and engineers. Cengage learning.
Sihono, S., & Khotimah, S. N. (2016). Eksperimen Penentuan Konstanta Dielektrik Beberapa Bahan Menggunakan LCR Meter Dan Prinsip Kerja Kapasitor Plat Sejajar, Prosiding SNIPS, 2016, 713-715.
Soedijono, B. (2019). Galat dan Perambatannya. Modul 1: galat dan perambatannya 1.1.
STPN. (2020). Modul 1: konsep pengukuran dan kesalahan (pp. 1–92).
Summerour, R., Heald, S., Owens, S. J. G., Madden, O., & Giaccai, J. A. (2013). Rubberized flannel in contemporary beaded powwow regalia. Preprints of the 9th North American Textile Conservation Conference, San Francisco, California, 2013, 183-198.
Supriyadi, S. (2016). Konstanta Dielektrik Bahan Kertas Karton Pada Keping Sejajar. Jurnal Fisika Unnes, 4(2), 74-77.
Torgovnikov, G. I., & Torgovnikov, G. I. (1993). Dielectric properties of wood-based materials. Springer.
Wina, E. (2001). Banana plant as ruminant feed. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences, 11(1), 20–27.
Downloads
Published
Issue
Section
License
The Authors submitting a manuscript do so on the understanding that if accepted Jurnal Ilmiah Pendidikan Fisika Al-Biruni (JIPF Al-Biruni) for publication, copyright publishing of the article shall be assigned/transferred to Physics Education Department, UIN Raden Intan Lampung as Publisher of the journal. Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement'. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement' form by the online version of this agreement.
Jurnal Ilmiah Pendidikan Fisika Al-Biruni and Physics Education Department, UIN Raden Intan Lampung, collaborate with Perkumpulan Pendidik IPA Indonesia (PPII) [Indonesian Society for Science Educators], and Physics Society of Indonesia as the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Jurnal Ilmiah Pendidikan Fisika Al-Biruni are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Agreement (CTA) Form can be downloaded here: [ Copyright Transfer Agreement (CTA) Form JIPF AL-BIRUNI 2020 ]
The copyright form should be signed electronically and send to the Editorial Office in the form of the original e-mail: [email protected]
Jurnal Ilmiah Pendidikan Fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .