Measurement of air drag as physics experiment enrichment at senior high school laboratory using the air track apparatus
Abstract
Keywords
Full Text:
PDFReferences
Amato, J. C., & Williams, R. E. (2010). Turning a Common Lab Exercise into a Challenging Lab Experiment: Revisiting the Carton an Inclined Track. The Physics Teacher, 48(5), 322–323. https://doi.org/10.1119/1.3393065
Azhikannickal, E. (2019). Sports, smartphones, and simulation as an engaging method to teach projectile motion incorporating air resistance. The Physics Teacher, 57(5), 308-311. https://doi.org/10.1119/1.5098919
Blanco, P. (2018). Air drag in the projectile lab. The Physics Teacher, 56(5), 276–276. https://doi.org/10.1119/1.5033863
Case, W. B., Tjossem, P. J., Abrams, K. G., & St. Germaine-Fuller, J. F. (2017). Coupled oscillators driven with difference-frequency parametric position feedback. Journal of Applied Physics, 122(12), 124905. https://doi.org/10.1063/1.4991887
Cross, R. (2012). Aerodynamics in the classroom and at the ball park. American Journal of Physics, 80(4), 289–297. https://doi.org/10.1119/1.3680609
González, M. Á., González, M. Á., Vegas, J., & Llamas, C. (2017). Measuring the coefficient of restitution and more: A simple experiment to promote students’ critical thinking and autonomous work. Physics Education, 52(5), 055002. https://doi.org/10.1088/1361-6552/aa71ea
Halliday, D., Resnick, R., & Walker, J. (2010). Fundamentals of Physics Extended 9th Edition. In Wiley; 9 edition (November 16, 2010). John Wiley & Sons.
Hauko, R., Andreevski, D., Paul, D., Šterk, M., & Repnik, R. (2018). The teaching of the harmonic oscillator damped by a constant force: The use of analogy and experiments. American Journal of Physics, 86(9), 657-662. https://doi.org/10.1119/1.5044654
Hackborn, W. W. (2016). On motion in a resisting medium: A historical perspective. American Journal of Physics, 84(2), 127-134. https://doi.org/10.1119/1.4935896
Hinrichsen, P. F. (2018). Coefficient of kinematic friction from damped oscillatory motion. Physics Education, 53(6), 065010. https://doi.org/10.1088/1361-6552/aadb28
Hinrichsen, P. F., & Larnder, C. I. (2018). Combined viscous and dry friction damping of oscillatory motion. American Journal of Physics, 86(8), 577-584. https://doi.org/10.1119/1.5034345
Li, A., Ma, L., Keene, D., Klingel, J., Payne, M., & Wang, X. J. (2016). Forced oscillations with linear and nonlinear damping. American Journal of Physics, 84(1), 32-37. https://doi.org/10.1119/1.4935358
Marinho, F., & Paulucci, L. (2016). Kinematic measurements using an infrared sensor. European Journal of Physics, 37(2), 025003. https://doi.org/10.1088/0143-0807/37/2/025003
Merci, B. (2016). Introduction to Fluid Mechanics. In SFPE Handbook of Fire Protection Engineering (pp. 1–24). https://doi.org/10.1007/978-1-4939-2565-0_1
Minkin, L., & Sikes, D. (2017). Measuring the coefficients of kinetic and rolling friction by exploring decaying mass-spring oscillations. Physics Education, 53(1), 015001. https://doi.org/10.1088/1361-6552/aa8a55
Mohazzabi, P. (2011). When Does Air Resistance Become Significant in Free Fall? The Physics Teacher, 49(2), 89–90. https://doi.org/10.1119/1.3543580
Mohazzabi, P. (2018). When Does Air Resistance Become Significant in Projectile Motion? The Physics Teacher, 56(3), 168–169. https://doi.org/10.1119/1.5025298
Moreno, J. (2018). Can mechanical energy vanish into thin air? American Journal of Physics, 86(3), 220–224. https://doi.org/10.1119/1.5019022
Mungan, C. E. (2012). Rolling friction on a wheeled laboratory cart. Physics Education, 47(3), 288. https://doi.org/10.1088/0031-9120/47/3/288
Oyelade, A. O. (2020). Experiment study on nonlinear oscillator containing magnetic spring with negative stiffness. International Journal of Non-Linear Mechanics, 120, 103396. https://doi.org/10.1016/j.ijnonlinmec.2019.103396
Prima, E. C., Mawaddah, M., Winarno, N., & Sriwulan, W. (2016, February). Kinematics investigations of cylinders rolling down a ramp using tracker. In AIP Conference Proceedings (Vol. 1708, No. 1, p. 070010). AIP Publishing LLC. https://doi.org/10.1063/1.4941183
Saphet, P., Tong-On, A., & Thepnurat, M. (2017). One dimensional two-body collisions experiment based on LabVIEW interface with Arduino. Journal of Physics: Conference Series, 901(1), 012115. https://doi.org/10.1088/1742-6596/901/1/012115
Siebert, C., DeStefano, P. R., & Widenhorn, R. (2019). Comparative modeling of free fall and drag-enhanced motion in the classical physics drop experiment. European Journal of Physics, 40(4), 045004. https://doi.org/10.1088/1361-6404/ab1fbc
Thuecks, D. J., & Demas, H. A. (2019). Modeling the effect of air-intake aperture size in the ping-pong ball cannon. American Journal of Physics, 87(2), 136–140. https://doi.org/10.1119/1.5086614
Vaara, R. L., & Sasaki, D. G. G. (2019). Teaching kinematic graphs in an undergraduate course using an active methodology mediated by video analysis. LUMAT: International Journal on Math, Science and Technology Education, 7(1), 1-26. https://doi.org/10.31129/LUMAT.7.1.374
Widenhorn, R. (2016). The physics of juggling a spinning ping-pong ball. American Journal of Physics, 84(12), 936–942. https://doi.org/10.1119/1.4964104
Yusuf, E. (2016). Using Tracker to Engage Students’ Learning and Research in Physics. Pertanika Journal Science and Technology, 24(2), 483-491.
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v9i1.5661
Refbacks
- There are currently no refbacks.


Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.