Approaching electrical circuit understanding with circuit builder virtual laboratory
Abstract
Keywords
Full Text:
PDFReferences
Afiana, E. (2017). Pengembangan modul pembelajaran berbantuan simulasi PhET pada pokok bahasan teori kinetik gas di MA. In Digital Repository Universitas Jember. https://doi.org/10.1242/jcs.150862
Arifullah, Halim, A., Syukri, M., & Nurfadilla, E. (2020). The development of student worksheets with PhET assisted to improve student science process skills. Journal of Physics: Conference Series, 1460(1), 1–4. https://doi.org/10.1088/1742-6596/1460/1/012144
Azwar, S. (2016). Reliabilitas dan validitas aitem. Buletin Psikologi, 3(1), 19–26. https://doi.org/10.22146/bpsi.13381
Correia, A. P., Koehler, N., Thompson, A., & Phye, G. (2019). The application of PhET simulation to teach gas behavior on the submicroscopic level: Secondary school students’ perceptions. Research in Science and Technological Education, 37(2), 193–217. https://doi.org/10.1080/02635143.2018.1487834
Cvjetkovic, V. M., & Matijevic, M. (2016). Overview of architectures with arduino boards as building blocks for data acquisition and control systems. International Journal of Online Engineering, 12(7), 10–17. https://doi.org/10.3991/ijoe.v12i07.5818
Dasilva, B. E., Kuswanto, H., Wilujeng, I., & Jumadi. (2019). SSP development with a scaffolding approach assisted by PhET simulation on light refraction to improve students’ critical thinking skills and achievement of science process skills. Journal of Physics: Conference Series, 1233(1), 1–12. https://doi.org/10.1088/1742-6596/1233/1/012044
Douglas, S. S., Aiken, J. M., Greco, E., Schatz, M., & Lin, S.-Y. (2017). Do-it-yourself whiteboard-style physics video lectures. The Physics Teacher, 55(1), 22–24. https://doi.org/10.1119/1.4972492
Eveline, E., Jumadi, Wilujeng, I., & Kuswanto, H. (2019). The effect of scaffolding approach assisted by PhET simulation on students’ conceptual understanding and students’ learning independence in physics. Journal of Physics: Conference Series, 1233(1), 1–11. https://doi.org/10.1088/1742-6596/1233/1/012036
Batuyong, C. T., & Antonio, V. V. (2018). Exploring the effect of PhET® interactive simulation-based activities on students’ performance and learning experiences in electromagnetism. Asia Pacific Journal of Multidisciplinary Research, 6(2), 121–131.
Farrokhnia, M. R., & Esmailpour, A. (2010). A study on the impact of real, virtual and comprehensive experimenting on students’ conceptual understanding of DC electric circuits and their skills in undergraduate electricity laboratory. Procedia - Social and Behavioral Sciences, 2(2), 5474–5482. https://doi.org/10.1016/j.sbspro.2010.03.893
Gusmida, R., & Islami, N. (2017). The development of learning media for the kinetic theory of gases using the ADDIE model with augmented reality. Journal of Educational Sciences, 1(1), 1–10. https://doi.org/10.31258/jes.1.1.p.1-10
İnce, E., Kırbaşlar, F. G., Güneş, Z. Ö., Yaman, Y., Yolcu, Ö., & Yolcu, E. (2015). An innovative approach in virtual laboratory education: The case of “IUVIRLAB” and relationships between communication skills with the usage of IUVIRLAB. Procedia - Social and Behavioral Sciences, 195(1), 1768–1777. https://doi.org/10.1016/j.sbspro.2015.06.377
Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool - exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54(1), 363–375. https://doi.org/10.1016/j.compenvurbsys.2015.09.006
Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
Luna-Moreno, D., Espinosa Sánchez, Y. M., Ponce De León, Y. R., Noé Arias, E., & Garnica Campos, G. (2015). Virtual instrumentation in LabVIEW for multiple optical characterizations on the same opto-mechanical system. Optik, 126(19), 1923–1929. https://doi.org/10.1016/j.ijleo.2015.05.040
Mahtari, S., Wati, M., Hartini, S., Misbah, M., & Dewantara, D. (2020). The effectiveness of the student worksheet with PhET simulation used scaffolding question prompt. Journal of Physics: Conference Series, 1422(1), 1–5. https://doi.org/10.1088/1742-6596/1422/1/012010
Mottelson, A., & Hornbæk, K. (2017). Virtual reality studies outside the laboratory. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Part F1319, 1–10. https://doi.org/10.1145/3139131.3139141
Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., & LeMaster, R. (2006). PhET: Interactive simulations for teaching and learning physics. The Physics Teacher, 44(1), 18–23. https://doi.org/10.1119/1.2150754
Putranta, H., Jumadi, & Wilujeng, I. (2019). Physics learning by PhET simulation-assisted using problem based learning (PBL) model to improve students’ critical thinking skills in work and energy chapters in MAN 3 Sleman. Asia-Pacific Forum on Science Learning and Teaching, 20(1), 1–44.
Rahmawati, E. N., Jumadi, & Astuti, D. P. (2020). Development of e-handout assisted by PhET simulation with problem based learning (PBL) model about momentum conservation law and collision to train students’ conceptual understanding. Journal of Physics: Conference Series, 1440(1), 1–9. https://doi.org/10.1088/1742-6596/1440/1/012048
Ramadan, E. M., Jumadi, & Astuti, D. P. (2020). Application of e-handout based on PhET simulation to improve critical thinking skills and learning independence of high school students. Journal of Physics: Conference Series, 1440(1), 1–8. https://doi.org/10.1088/1742-6596/1440/1/012025
Rytting, M., Wright, G., Shumway, S., & Jensen, J. (2019). Comparison of simulation and hands-on labs in helping high school students learn physics concepts. International Journal of Education, 11(1), 18–28. https://doi.org/10.5296/ije.v11i1.14017
Sari, S., Destianti, S. A., Irwansyah, F. S., Subarkah, C. Z., Aulawi, H., & Ramdhani, M. A. (2019). Solubility equilibrium learning supported by PhET-SS. Journal of Physics: Conference Series, 1157(4), 1–7. https://doi.org/10.1088/1742-6596/1157/4/042010
Simon, M. N., Prather, E. E., Buxner, S. R., & Impey, C. D. (2019). The development and validation of the planet formation concept inventory. International Journal of Science Education, 41(17), 2448–2464. https://doi.org/10.1080/09500693.2019.1685140
Siswanto, J. (2019). Implementasi model IBMR berbantu PhET simulation untuk meningkatkan kemampuan representasi pada pembelajaran fisika. Jurnal Penelitian Pembelajaran Fisika, 10(2), 96–100. https://doi.org/10.26877/jp2f.v10i2.4437
Thiagarajan, S, Semmel, Dorothy S., Sennel, M. E. (1974). Instructional development for training teachers of exception children. In A sourcebook ERIC. ERIC.
Tsai, S.-H., & Landau, D. P. (2008). Computer simulations: A window on the static and dynamic properties of simple spin models. American Journal of Physics, 76(4), 445–452. https://doi.org/10.1119/1.2839563
Utami, I. S., Septiyanto, R. F., Wibowo, F. C., & Suryana, A. (2017). Pengembangan STEM-A (science, technology, engineering, mathematic and animation) berbasis kearifan lokal dalam pembelajaran fisika. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(1), 67–73. https://doi.org/10.24042/jpifalbiruni.v6i1.1581
Valance, A., Rasmussen, K. R., Ould El Moctar, A., & Dupont, P. (2015). The physics of Aeolian sand transport. Comptes Rendus Physique, 16(1), (105–117). https://doi.org/10.1016/j.crhy.2015.01.006
Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682–683. https://doi.org/10.1126/science.1161948
Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem solving skills on direct current electricity through inquiry-based learning with PhET simulations. International Journal of Instruction, 11(4), 123–138. https://doi.org/10.12973/iji.2018.1149a
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v9i2.5976
Refbacks
- There are currently no refbacks.


Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.