The comparison of high school students’ understanding of kinematic materials: Case of question representations
Abstract
This present study aimed to compare the understanding on kinematic concepts between public and private high school students in terms of the type of questions representation. Therefore, this quantitative and descriptive study applied survey methods in conducting the research. 190 students of private high school and 199 students of public high school were involved as the research subjects. The main instrument in this study was an isomorphic multiple-choice test which was developed into verbal representations, pictures and graphics. Specifically, this research instrument was adapted from Force Motion Concept Evaluation (FMCE) and High School National Exam which had been validated with a reliability number of 0.74. Another key point, descriptive statistical and inferential independent t-test were used as the data analysis. Consequently, the results showed that there were significant differences in conceptual understanding between private and public high schools’ students. The concept understanding in private high school was lower than in public high school, which was evidenced with the average scores of public high school students by 42,68 and private high school students by 22,93. All in all, high school students are more capable in answering questions over verbal representation instead of understanding the concepts with graphical representations.
Full Text:
PDFReferences
Afriana, J. (2016). Penggunaan multimedia dalam pembelajaran teori kinetik gas di SMA/MA negeri dan swasta kecamatan Sambas. Jurnal Pendidikan Matematika dan IPA, 4(2). https://doi.org/10.26418/jpmipa.v4i2.17590
Ainsworth, S., Stieff, M., DeSutter, D., Tytler, R., Prain, V., Panagiotopoulos, D., Wigmore, P., van Joolingen, W., Heijnes, D., Leenaars, F., & Puntambekar, S. (2016). Exploring the value of drawing in learning and assessment. Semantic Scholar 8.
Arifin, M., Dardiri, A., & Handayani, A. N. (2016). Hubungan kemampuan penyesuaian diri dan pola berpikir dengan kemandirian belajar serta dampaknya pada prestasi akademik mahasiswa. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan. 1(10), 943—1951.
Artiawati, P. R., Mulyani, R., & Kurniawan, Y. (2016). Identifikasi kuantitas siswa yang miskonsepsi menggunakan three tier-test pada materi gerak lurus beraturan (HLB). JIPF (Jurnal Ilmu Pendidikan Fisika), 1(1), 13–15. https://doi.org/10.26737/jipf.v1i1.54
Bayraktar, S. (2009). Misconceptions of Turkish Pre-Service Teachers about Force and Motion. International Journal of Science and Mathematics Education, 7(2), 273–291. https://doi.org/10.1007/s10763-007-9120-9
Beichner, R. J. (1996). The impact of video motion analysis on kinematics graph interpretation skills. American Journal of Physics, 64(10), 1272–1277. https://doi.org/10.1119/1.18390
Brewe, E., Bruun, J., & Bearden, I. G. (2016). Using module analysis for multiple choice responses: A new method applied to force concept inventory data. Physical Review Physics Education Research, 12(2). https://doi.org/10.1103/PhysRevPhysEducRes.12.020131
Dega, B. G., Kriek, J., & Mogese, T. F. (2013). Students’ conceptual change in electricity and magnetism using simulations: A comparison of cognitive perturbation and cognitive conflict. Journal of Research in Science Teaching, 50(6), 677–698. https://doi.org/10.1002/tea.21096
Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics - Physics Education Research, 10(2), 020119. https://doi.org/10.1103/PhysRevSTPER.10.020119
Dou, R., & Zwolak, J. P. (2019). Practitioner’s guide to social network analysis: Examining physics anxiety in an active-learning setting. Physical Review Physics Education Research, 15(2), 020105. https://doi.org/10.1103/PhysRevPhysEducRes.15.020105
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497
Hofer, S. I., Schumacher, R., & Rubin, H. (2017a). The test of basic Mechanics Conceptual Understanding (bMCU): Using Rasch analysis to develop and evaluate an efficient multiple-choice test on Newton’s mechanics. International Journal of STEM Education, 4(1), 18. https://doi.org/10.1186/s40594-017-0080-5
Hofer, S. I., Schumacher, R., & Rubin, H. (2017b). The test of basic mechanics conceptual understanding (bMCU): Using Rasch analysis to develop and evaluate an efficient multiple-choice test on Newton’s mechanics. International Journal of STEM Education, 4(1). https://doi.org/10.1186/s40594-017-0080-5
Kabil, O. (2015). Philosophy in physics education. Procedia - Social and Behavioral Sciences, 197, 675–679. https://doi.org/10.1016/j.sbspro.2015.07.057
Kusairi, S., Hidayat, A., & Hidayat, N. (2017). Web-based diagnostic test: introducing isomorphic items to assess students’ misconceptions and error patterns. Chemistry Bulgarian Journal of Science Education. (4) 15.
McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987a). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513. https://doi.org/10.1119/1.15104
McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987b). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513. https://doi.org/10.1119/1.15104
Müller, A., Hettmannsperger, R., Scheid, J., Scheid, & Schnotz, W. (2017). Representational competence, understanding of experiments, phenomena and basic concepts in geometrical optics: A representational approach. Springer International Publishing AG 2017, Models and Modeling in Science Education 10. https://doi.org/10.1007/978-3-319-58914-5_10
Nieminen, P., Savinainen, A., & Viiri, J. (2010). Force concept inventory-based multiple-choice test for investigating students’ representational consistency. Physical Review Special Topics - Physics Education Research, 6(2). https://doi.org/10.1103/PhysRevSTPER.6.020109
Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple Representations in Physics and Science Education – Why Should We Use Them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (Vol. 10, pp. 1–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-58914-5_1
Planinic, M. (2013). Comparison of university students’ understanding of graphs in different contexts. Physical Review Special Topics - Physics Education Research, 9(2). https://doi.org/10.1103/PhysRevSTPER.9.020103
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393–1414. https://doi.org/10.1007/s10763-012-9344-1
Redish, E. F. (2005). Problem Solving and The Use of Math In Physics Courses. World View on Physics Education in 2005, 10.
Rohmah, Z., & Handhika, J. (2018). Two-Tier Test Diagnostik sebagai identifikasi miskonsepsi tahap awal materi kinematika gerak lurus siswa kelas X MIA MAN 1 Kota Madiun. Quantum: Seminar Nasional Fisika, Dan Pendidikan Fisika, 0(0), 552–556.
Saputra, A. T., Jumadi, J., Paramitha, D. W., & Sarah, S. (2019). Problem-Solving approach in multiple representations of qualitative and quantitative problems in kinematics motion. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), 89–98. https://doi.org/10.24042/jipfalbiruni.v8i1.3801
Schunk, D. H. (2012). Learning theories: An educational perspective (6th ed). Pearson.
Senler, B. (2016). Pre-service science teachers’ self-efficacy: The role of attitude, anxiety and locus of control. Australian Journal of Education, 60(1), 26–41. https://doi.org/10.1177/0004944116629807
Suprapto, N., Suliyanah, Prahani, B. K., Jauhariyah, M. N. R., & Admoko, S. (2018). Exploring physics concepts among novice teachers through CMAP tools. Journal of Physics: Conference Series, 997, 012011. https://doi.org/10.1088/1742-6596/997/1/012011
Sutopo, Hidayah, N., Wisodo, H., & Haryoto, D. (2020). Improving students’ understanding of kinematics concepts through multi-representational learning. AIP Conference Proceeding. 2215. 030026. https://doi.org/10.1063/5.0004063
Sutopo, & Waldrip, B. (2014). Impact of a representational approach on students’ reasoning and conceptual understanding in learning mechanics. International Journal of Science and Mathematics Education, 12(4), 741–765. https://doi.org/10.1007/s10763-013-9431-y
Sutrisno, A. D. (2019a). Survey pemahaman konsep dan identifikasi miskonsepsi siswa SMA pada materi kinematika gerak. WaPFi (Wahana Pendidikan Fisika), 4(1), 106–112.
Sutrisno, A. D. (2019b). Survey pemahaman konsep dan identifikasi miskonsepsi siswa SMA pada materi kinematika Gerak. WaPFi (Wahana Pendidikan Fisika), 4(1), 106. https://doi.org/10.17509/wapfi.v4i1.15796
Yeo, J., & Gilbert, J. K. (2017). The role of representations in students’ explanations of four phenomena in physics: dynamics, thermal physics, electromagnetic induction and superposition. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (Vol. 10, pp. 255–287). Springer International Publishing. https://doi.org/10.1007/978-3-319-58914-5_12
Zavala, G., Tejeda, S., Barniol, P., & Beichner, R. J. (2017a). Modifying the test of understanding graphs in kinematics. Physical Review Physics Education Research, 13(2). https://doi.org/10.1103/PhysRevPhysEducRes.13.020111
Zavala, G., Tejeda, S., Barniol, P., & Beichner, R. J. (2017b). Modifying the test of understanding graphs in kinematics. Physical Review Physics Education Research, 13(2), 020111. https://doi.org/10.1103/PhysRevPhysEducRes.13.020111
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v9i2.6032
Refbacks
- There are currently no refbacks.


Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.