Estimation of crystallite size, density, and compositional of the Ti: Al2O3 single crystal
Abstract
Keywords
Full Text:
PDFReferences
Alombert-Goget, G., Lebbou, K., Barthalay, N., Legal, H., & Chériaux, G. (2014). Large Ti-doped sapphire bulk crystal for high power laser applications. Optical Materials, 36(12), 2004–2006. https://doi.org/10.1016/j.optmat.2014.01.011
Alombert-Goget, G., Li, H., Faria, J., Labor, S., Guignier, D., & Lebbou, K. (2016). Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique. Optical Materials, 51(1), 1–4. https://doi.org/10.1016/j.optmat.2015.11.016
Chen, C.-H., Chen, J.-C., Chiue, Y.-S., Chang, C.-H., Liu, C.-M., & Chen, C.-Y. (2014). Thermal and stress distributions in larger sapphire crystals during the cooling process in a Kyropoulos furnace. Journal of Crystal Growth, 385(1), 55–60. https://doi.org/10.1016/j.jcrysgro.2013.04.060
Chen, C., Chen, H. J., Yan, W. B., Min, C. H., Yu, H. Q., Wang, Y. M., Cheng, P., & Liu, C. C. (2014). Effect of crucible shape on heat transport and melt–crystal interface during the Kyropoulos sapphire crystal growth. Journal of Crystal Growth, 388(1), 29–34. https://doi.org/10.1016/j.jcrysgro.2013.11.002
Chen, C. H., Chen, J. C., Lu, C. W., & Liu, C. M. (2012). Effect of power arrangement on the crystal shape during the kyropoulos sapphire crystal growth process. Journal of Crystal Growth, 352(1), 9–15. https://doi.org/10.1016/j.jcrysgro.2012.01.017
Dong, J., & Deng, P. (2004). Ti: sapphire crystal used in ultrafast lasers and amplifiers. Journal of Crystal Growth, 261(4), 514–519. https://doi.org/10.1016/j.jcrysgro.2003.09.049
Fielitz, P., Borchardt, G., Ganschow, S., Bertram, R., & Markwitz, A. (2008). 26Al tracer diffusion in titanium doped single crystalline α-Al2O3. Solid State Ionics, 179(11–12), 373–379. https://doi.org/10.1016/j.ssi.2008.03.007
Gao, Y., Guo, X., & Lu, J. (2015). Analysis of cracking at the bottom during the last stage of kyropoulos sapphire crystal growth【Al2O3】. International Journal of Science, 2(8), 146–153.
Ghezal, E. A., Nehari, A., Lebbou, K., & Duffar, T. (2012). Observation of gas bubble incorporation during micro pulling-down growth of sapphire. Crystal Growth and Design, 12(11), 5715–5719. https://doi.org/10.1021/cg301232r
Han, X., Feng, X., Li, W., & Guo, S. (2020). One kind of new Ti3+ luminous center in Ti: Al2O3 crystals. Optical Materials, 105(1), 109881. https://doi.org/10.1016/j.optmat.2020.109881
Hur, M.-J., Han, X.-F., Choi, H.-G., & Yi, K.-W. (2017). Crystal front shape control by use of an additional heater in a czochralski sapphire single crystal growth system. Journal of Crystal Growth, 474(1), 24–30. https://doi.org/10.1016/j.jcrysgro.2016.12.078
Jainal, M. N., Ibrahim, Z., & Kusuma, H. H. (2010). Influence of control power on the diameter of Ti: Al2O3 Single Crystal. Proceedings of 3rd International Conference on Solid State Science & Technology.
Joyce, D. B., & Schmid, F. (2010). Progress in the growth of large scale Ti : sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. Journal of Crystal Growth, 312(8), 1138–1141. https://doi.org/10.1016/j.jcrysgro.2009.11.002
Kamada, K., Murakami, R., Kochurikhin, V. V., Luidmila, G., Jin Kim, K., Shoji, Y., Yamaji, A., Kurosawa, S., Ohashi, Y., Yokota, Y., & Yoshikawa, A. (2018). Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method. Journal of Crystal Growth, 492(1), 45–49. https://doi.org/10.1016/j.jcrysgro.2018.03.023
Kamaruddin, W. H. A., Kusuma, H. H., & Ibrahim, Z. (2013). Effect of new thermal insulation to the growth of LiNbO3 single crystal by czochralski method. Advanced Materials Research, 701, 108–112. https://doi.org/10.4028/www.scientific.net/AMR.701.108
Kozlov, S. A., & Samartsev, V. V. (2013). Femtosecond lasers and laser systems. In Fundamentals of Femtosecond Optics (pp. 94–243). Elsevier. https://doi.org/10.1533/9781782421290.94
Kusuma, H. H. (2015). X-Ray diffraction and density distribution measurements on the Al2O3 crystals grown by czochralski method with different pull rate. Journal of Natural Sciences and Mathematics Research, 1(1), 1–4. https://doi.org/10.21580/jnsmr.2015.1.1.475
Kusuma, H. H., Ibrahim, Z., & Othaman, Z. (2018). The density and compositional analysis of titanium doped sapphire single crystal is grown by the Czocharlski method. Journal of Physics: Conference Series, 983(1), 1–7. https://doi.org/10.1088/1742-6596/983/1/012018
Li, H., Ghezal, E. A., Alombert-Goget, G., Breton, G., Ingargiola, J. M., Brenier, A., & Lebbou, K. (2014). Qualitative and quantitative bubbles defects analysis in undoped and Ti-doped sapphire crystals grown by Czochralski technique. Optical Materials, 37(1), 132–138. https://doi.org/10.1016/j.optmat.2014.05.012
Li, H., Ghezal, E. A., Nehari, A., Alombert-Goget, G., Brenier, A., & Lebbou, K. (2013). Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique. Optical Materials, 35(5), 1071–1076. https://doi.org/10.1016/j.optmat.2012.12.022
Moulton, P. F., Cederberg, J. G., Stevens, K. T., Foundos, G., Koselja, M., & Preclikova, J. (2019). Characterization of absorption bands in Ti: sapphire crystals. Optical Materials Express, 9(5), 2216–2251. https://doi.org/10.1364/ome.9.002216
Nehari, A., Brenier, A., Panzer, G., Lebbou, K., Godfroy, J., Labor, S., Legal, H., Chériaux, G., Chambaret, J. P., Duffar, T., & Moncorgé, R. (2011). Ti-doped sapphire (Al2O3) single crystals grown by the kyropoulos technique and optical characterizations. Crystal Growth and Design, 11(2), 445–448. https://doi.org/10.1021/cg101190q
Panahi, O., Nazeri, M., & Tavassoli, S. H. (2015). Design and construction of a tunable pulsed Ti: sapphire laser. Journal of Theoretical and Applied Physics, 9(2), 99–103. https://doi.org/10.1007/s40094-015-0164-x
Raeder, S., Ferrer, R., Granados, C., Huyse, M., Kron, T., Kudryavtsev, Y., Lecesne, N., Piot, J., Romans, J., Savajols, H., Van Duppen, P., & Wendt, K. D. A. (2020). Performance of Dye and Ti: sapphire laser systems for laser ionization and spectroscopy studies at S3. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 463, 86–95. https://doi.org/10.1016/j.nimb.2019.11.024
Ren, Y., Jiao, Y., Vázquez de Aldana, J. R., & Chen, F. (2016). Ti: Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties. Optical Materials, 58, 61–66. https://doi.org/10.1016/j.optmat.2016.05.023
Sawada, R., Tanaka, H., Sugiyama, N., & Kannari, F. (2017). Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti: sapphire laser. Applied Optics, 56(6), 1654–1661. https://doi.org/10.1364/AO.56.001654
Sen, G., Alombert Goget, G., Nagirnyi, V., Romet, I., Tran Caliste, T. N., Baruchel, J., Muzy, J., Giroud, L., Lebbou, K., & Duffar, T. (2020). Origin of scattering defect observed in large diameter Ti: Al2O3 crystals grown by the Kyropoulos technique. Journal of Crystal Growth, 535(1), 125530. https://doi.org/10.1016/j.jcrysgro.2020.125530
Song, C., Hang, Y., Xia, C., Zhang, C., Xu, J., & Zhou, W. (2005). Growth of composite sapphire/Ti: sapphire by the hydrothermal method. Journal of Crystal Growth, 277(1–4), 200–204. https://doi.org/10.1016/j.jcrysgro.2004.12.135
Spassky, D. A., Kozlova, N. S., Brik, M. G., Nagirnyi, V., Omelkov, S., Buzanov, O. A., Buryi, M., Laguta, V., Shlegel, V. N., & Ivannikova, N. V. (2017). Luminescent, optical, and electronic properties of Na2Mo2O7 single crystals. Journal of Luminescence, 192, 1264–1272. https://doi.org/10.1016/j.jlumin.2017.09.006
Stelian, C., Sen, G., Barthalay, N., & Duffar, T. (2016). Comparison between numerical modeling and experimental measurements of the interface shape in Kyropoulos growth of Ti-doped sapphire crystals. Journal of Crystal Growth, 453, 90–98. https://doi.org/10.1016/j.jcrysgro.2016.08.001
Stelian, Carmen, Alombert-Goget, G., Sen, G., Barthalay, N., Lebbou, K., & Duffar, T. (2017). Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method. Optical Materials, 69, 73–80. https://doi.org/10.1016/j.optmat.2017.04.020
Wang, B., Bliss, D. F., & Callahan, M. J. (2009). Hydrothermal growth of Ti: sapphire (Ti3+: Al2O3) laser crystals. Journal of Crystal Growth, 311(3), 443–447. https://doi.org/10.1016/j.jcrysgro.2008.09.052
Wu, F., Zhang, Z., Yang, X., Hu, J., Ji, P., Gui, J., Wang, C., Chen, J., Peng, Y., Liu, X., Liu, Y., Lu, X., Xu, Y., Leng, Y., Li, R., & Xu, Z. (2020). Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator. Optics and Laser Technology, 131(June), 1–8. https://doi.org/10.1016/j.optlastec.2020.106453
Zhang, L., Gonçalves, A. A. S., & Jaroniec, M. (2020). Identification of preferentially exposed crystal facets by X-ray diffraction. RSC Advances, 10(10), 5585–5589. https://doi.org/10.1039/D0RA00769B
Zhou, D., Xia, C., Guyot, Y., Zhong, J., Xu, X., Feng, S., Lu, W., Song, J., & Lebbou, K. (2015). Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers. Optical Materials, 47, 495–500. https://doi.org/10.1016/j.optmat.2015.06.027
Zhou, G., Dong, Y., Xu, J., Li, H., Si, J., Qian, X., & Li, X. (2006). Φ140 mm sapphire crystal growth by temperature gradient techniques and its color centers. Materials Letters, 60(7), 901–904. https://doi.org/10.1016/j.matlet.2005.10.092
Zong, Q.-S., Bian, Q., Xu, C., Chang, J.-Q., He, L.-J., Bo, Y., Zuo, J.-W., Xu, Y.-T., Cui, D.-F., Peng, Q.-J., & Xu, Z.-Y. (2019). High beam quality narrow linewidth microsecond pulse Ti: sapphire laser operating at 819.710 nm. Optics & Laser Technology, 113(November 2018), 52–56. https://doi.org/10.1016/j.optlastec.2018.11.019
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v9i2.7207
Refbacks
- There are currently no refbacks.


Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.