Removing BOD, COD, and Decolorization of Batik Cual Wastewater using Fenton Mechanism
Abstract
Keywords
Full Text:
PDFReferences
Atima, W. (2015). BOD dan COD sebagai parameter pencemaran air dan baku mutu air limbah. Jurnal Biology Science & Education, 4(1), 83–93.
Ayan, S., Furqon, C., & Sultan, M. A. (2018). Business model canvas analysis on cual weaving industry. The International Journal of Business Review (The Jobs Review), 1(2), 129–136. https://doi.org/10.17509/tjr.v1i2.14108
Babaei, A. A., Kakavandi, B., Rafiee, M., Kalantarhormizi, F., Purkaram, I., Ahmadi, E., & Esmaeili, S. (2017). Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C). Journal of Industrial and Engineering Chemistry, 56(July 2017), 163–174. https://doi.org/10.1016/j.jiec.2017.07.009
Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. https://doi.org/10.1080/10643389.2017.1393263
Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148(2), 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034
Buthiyappan, A., & Abdul Raman, A. A. (2019). Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production, 6(30), 1025–1040. https://doi.org/10.1016/j.jclepro.2018.09.234
Buthiyappan, A., Abdul Raman, A. A., & Daud, W. M. A. W. (2016). Development of an advanced chemical oxidation wastewater treatment system for the batik industry in Malaysia. RSC Advances, 6(30), 25222–25241. https://doi.org/10.1039/c5ra26775g
Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
Dalvand, A., Ehrampoush, M. H., Ghaneian, M. T., Mokhtari, M., Ebrahimi, A. A., Ahmadi, R. M., & Mahvi, A. H. (2017). Application of chemical coagulation process for direct dye removal from textile wastewater. Journal of Environmental Health and Sustainable Development, 2(3), 333–339.
Damayanti, I. R., & Ferdiana, F. (2020). The role of online media communication in increasing tourism promotion in bangka regency. KnE Social Sciences, 2020, 910–923. https://doi.org/10.18502/kss.v4i14.7947
Galih, V., Putra, V., Purnomosari, E., & Mohamad, J. N. (2020). Developing heat rate and heat capacity measurement instruments of textile waste solution in the textile dyeing process. Jurnal Ilmiah Pendidikan Fisika Al-Biruni 9(2), 323-338. https://doi.org/10.24042/jipfalbiruni.v9i2.5951
Ghernaout, D., Elboughdiri, N., & Ghareba, S. (2020). Fenton technology for wastewater treatment: Dares and trends. OALib, 07(01), 1–26. https://doi.org/10.4236/oalib.1106045
Gilja, V., Novaković, K., Travas-Sejdic, J., Hrnjak-Murgić, Z., Roković, M. K., & Žic, M. (2017). Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of Azo dye in wastewater. Nanomaterials, 7(12), 412. https://doi.org/10.3390/nano7120412
GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with fenton or photo-fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2018). Optimization of sequential chemical coagulation - electro-oxidation process for the treatment of an industrial textile wastewater. Journal of Water Process Engineering, 22(2), 73–79. https://doi.org/10.1016/j.jwpe.2018.01.005
Guo, Y., Xue, Q., Zhang, H., Wang, N., Chang, S., Wang, H., Pang, H., & Chen, H. (2018). Treatment of real benzene dye intermediates wastewater by the Fenton method: Characteristics and multi-response optimization. RSC Advances, 8(1), 80–90. https://doi.org/10.1039/c7ra09404c
Gusa, R. F., Sari, D. N., Afriani, F., Sunanda, W., & Tiandho, Y. (2020). Effect of electrode numbers in electrocoagulation of Batik Cual wastewater: Analysis on water quality and energy used. IOP Conference Series: Earth and Environmental Science, 599(1), 1-5. https://doi.org/10.1088/1755-1315/599/1/012061
Hassaan, M. A., & Nemr, A. E. (2017). Advanced oxidation processes for textile wastewater treatment. International Journal of Photochemistry and Photobiology, 2(5), 85–93. https://doi.org/10.1155/2013/683682
Khalik, W. F., Ho, L. N., Ong, S. A., Voon, C. H., Wong, Y. S., Yusuf, S. Y., Yusoff, N. A., & Lee, S. L. (2018). Enhancement of simultaneous batik wastewater treatment and electricity generation in photocatalytic fuel cell. Environmental Science and Pollution Research, 25(35), 35164–35175. https://doi.org/10.1007/s11356-018-3414-z
Khamparia, S., & Jaspal, D. K. (2017). Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of Environmental Science and Engineering, 11(1), 1–18. https://doi.org/10.1007/s11783-017-0899-5
Kremer, M. L. (1999). Mechanism of the Fenton reaction. Evidence for a new intermediate. Physical Chemistry Chemical Physics, 1(15), 3595–3605. https://doi.org/10.1039/a903915e
Lestari, S., & Windyartini, D. S. (2020). Application of sargassum cinereum and rhizobacteria as biosorbent zn in batik wastewater. Journal of Hunan University (Natural Sciences), 47(11), 15–21.
Liu, S. T., Huang, J., Ye, Y., Zhang, A. B., Pan, L., & Chen, X. G. (2013). Microwave enhanced fenton process for the removal of methylene blue from aqueous solution. Chemical Engineering Journal, 215–216, 586–590. https://doi.org/10.1016/j.cej.2012.11.003
Malvestiti, J. A., Fagnani, E., Simão, D., & Dantas, R. F. (2019). Optimization of UV/H2O2 and ozone wastewater treatment by the experimental design methodology. Environmental Technology (United Kingdom), 40(15), 1910–1922. https://doi.org/10.1080/09593330.2018.1432698
Naje, A. S., Chelliapan, S., Zakaria, Z., Ajeel, M. A., & Alaba, P. A. (2017). A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 33(3), 263–292. https://doi.org/10.1515/revce-2016-0019
Nandiyanto, A. B. D., Zaen, R., Oktiani, R., Abdullah, A. G., & Riza, L. S. (2018). A simple, rapid analysis, portable, low-cost, and Arduino-based spectrophotometer with white LED as a light source for analyzing solution concentration. Telkomnika (Telecommunication Computing Electronics and Control), 16(2), 580–585. https://doi.org/10.12928/TELKOMNIKA.v16i2.7159
Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 375(22), 120597. https://doi.org/10.1016/j.cej.2018.12.057
Pérez, M., Torrades, F., Domènech, X., & Peral, J. (2002). Fenton and photo-Fenton oxidation of textile effluents. Water Research, 36(11), 2703–2710. https://doi.org/10.1016/S0043-1354(01)00506-1
Piaskowski, K., Świderska-Dąbrowska, R., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371–1384. https://doi.org/10.5740/jaoacint.18-0051
Qin, Q., Liu, Y., Li, X., Sun, T., & Xu, Y. (2018). Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Advances, 8(2), 1071–1077. https://doi.org/10.1039/c7ra12488k
Rahmadyanti, E., & Febriyanti, C. P. (2020). Feasibility of constructed wetland using coagulation flocculation technology in batik wastewater treatment. Journal of Ecological Engineering, 21(6), 67–77. https://doi.org/10.12911/22998993/123253
Senthil Kumar, P., Janet Joshiba, G., Femina, C. C., Varshini, P., Priyadharshini, S., Arun Karthick, M. S., & Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination and Water Treatment, 172, 395–416. https://doi.org/10.5004/dwt.2019.24613
Setyaningtyas, T., Riyani, K., Handayani, S. N., & Firdharini, C. (2019). Degradation of Congo Red in batik wastewater using fenton reagent under visible rays. IOP Conference Series: Materials Science and Engineering, 509(1), 012027. https://doi.org/10.1088/1757-899X/509/1/012027
Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29(3), 100804. https://doi.org/10.1016/j.jwpe.2019.100804
Tomohardjo, I. S., Tresnawati, Y., & Yulista, Y. (2018). Communication pattern to develop the spirit of creative economy and local wisdom value in betawi batik craftsmen Terogong Jakarta and cual batik craftsmen Pangkal Pinang Bangka Belitung Island. Proceeding The 1st International Conference on Social Sciences, 1(1), 279–290. https://jurnal.umj.ac.id/index.php/icoss/article/view/2334
Zhang, H., Li, P., Wang, Z., Cui, W. W., Zhang, Y., Zhang, Y., Zheng, S., & Zheng, Y. (2018). Sustainable Disposal of Cr(VI): Adsorption-Reduction Strategy for Treating Textile Wastewaters with Amino-Functionalized Boehmite Hazardous Solid Wastes. ACS Sustainable Chemistry and Engineering, 6(5), 6811–6819. https://doi.org/10.1021/acssuschemeng.8b00640
Zhang, M. H., Dong, H., Zhao, L., Wang, D. X., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v10i1.8079
Refbacks
- There are currently no refbacks.


Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.