Home-Made Simple Experiment to Measure Sound Intensity using Smartphones
Abstract
Keywords
Full Text:
PDFReferences
Adnan, M., & Anwar, K. (2020). Online Learning amid the COVID-19 Pandemic: Students’ Perspectives. Online Submission, 2(1), 45–51. https://doi.org/http://www.doi.org/10.33902/JPSP.%202020261309
Ali, W. (2020). Online and remote learning in higher education institutes: A necessity in light of COVID-19 pandemic. Higher Education Studies, 10(3), 16–25. https://doi.org/https://doi.org/10.5539/hes.v10n3p16
Apipah, I. (2016). Distribution profile of sound level intensity with smart chip wt5001 using sound of blaganjur and cengceng. Journal Fisika, 5(6), 354–362. http://journal.student.uny.ac.id/ojs/ojs/index.php/fisika/article/view/3402
Ariz, I. S., Giménez, M. H., Castro-Palacio, J. C., Gómez-Tejedor, J. A., & Monsoriu, J. A. (2017). The smartphone as a sound level meter: Visualizing acoustical beats. Technica Industria, 318, 34–38. http://www.tecnicaindustrial.es/TIFrontal/sumario.aspx?id=108
Churiyah, M., Sholikhan, S., Filianti, F., & Sakdiyyah, D. A. (2020). Indonesia education readiness conducting distance learning in Covid-19 pandemic situation. International Journal of Multicultural and Multireligious Understanding, 7(6), 491–507.
Daniel, J. (2020). Education and the COVID-19 pandemic. Prospects, 49(1), 91–96.
De Mesnard, L. (2013). Pollution models and inverse distance weighting: Some critical remarks. Computers and Geosciences, 52, 459–469. https://doi.org/10.1016/j.cageo.2012.11.002
Dias, M. A., Carvalho, P. S., & Ventura, D. R. (2016). How to study the doppler effect with audacity software. Physics Education, 51(3), 35002. https://doi.org/https://doi.org/10.1088/0031-9120/51/3/035002
Dierecks, G. R., Ojha, S., Infusino, S., Maurer, R., & Hartnick, C. J. (2013). Consistency of voice frequency and perturbation measures in children using cepstral analyses amovement toward increased recording stability. JAMA Otolaryngology-Head & Neck Sur, 139(8), 811–816. https://doi.org/10.1001/jamaoto.2013.3926
Fahy, F., & Thompson, D. (2016). Fundamentals of sound and vibration. CRC Press.
Florea, C. (2019). Brief analysis of sounds using a smartphone. The Physics Teacher, 57(4), 214–215. https://doi.org/10.1119/1.5095371
Gómez-Tejedor, J. A., Castro-Palacio, J. C., & Monsoriu, J. A. (2014). The acoustic doppler effect applied to the study of linear motions. European Journal of Physics, 35(2). https://doi.org/10.1088/0143-0807/35/2/025006
González, M. Á., Martín, M. E., & Herguedas, M. (2014). Mobile phones for teaching physics : Using applications and sensors. Second International Conference on Technological Ecosystems for Enhancing Multiculturality - TEEM’14, 349–355.
Hasan, W. L., Wijayanto, I., & Susatio, E. (2016). Design and implementation of audio meter based in android. E-Proceedings of Engineering, 3(3), 4371-4378
Hawley, S. H., & McClain, R. E. (2018). Visualizing sound directivity via smartphone sensors. The Physics Teacher, 56(2), 72–74. https://doi.org/10.1119/1.5021430
Hellesund, S. (2019). Measuring the speed of sound in air using a smartphone and a cardboard tube. Physics Education, 54(3). https://doi.org/10.1088/1361-6552/ab0e21
Hirth, M., Kuhn, J., & Muller, A. (2015). Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology. The Physics Teacher, 53(120). https://doi.org/10.1119/1.4905819
Kasper, L., Vogt, P., & Strohmeyer, C. (2015). Stationary waves in tubes and the speed of sound. The Physics Teacher, 53(1), 52–53. https://doi.org/10.1119/1.4904249
Kuhn, J., & Vogt, P. (2013). Analyzing acoustic phenomena with a smartphone microphone. The Physics Teacher, 51(118), 2–4. https://doi.org/10.1119/1.4775539
Kumar, N. (2001). A laboratory and field study of the attenuation of sound intensity using a whistle as the sonic generator. New Jersey Institute of Technology.
Kuruvilla-Mathew, A., Purdy, S. C., & Welch, D. (2015). Cortical encoding of speech acoustics: Effects of noise and amplification. International Journal of Audiology, 54(11), 852–864. https://doi.org/http://doi.org/https://doi.org/10.3109/14992027.2015.1055838
Li, L., & Gong, Q. (2016). The early component of middle latency auditory-evoked potentials in the process of deviance detection. NeuroReport, 27(10), 769–773. https://doi.org/http://doi.org/10.1097/WNR.0000000000000611
Meitei, S. N., Borah, K., & Chatterjee, S. (2020). Modelling of acoustic wave propagation due to partial discharge and its detection and localization in an oil-filled distribution transformer. Frequenz, 74(1–2), 73–81. https://doi.org/https://doi.org/10.1515/freq-2019-0050
Odenwald, S. (2020). Smartphone sensors for citizen science applications: Light and sound. Citizen Science: Theory and Practice, 5(1). https://doi.org/http://doi.org/10.5334/cstp.254
Olsson, J., & Linderholt, A. (2019). Force to sound pressure frequency response measurements using a modified tapping machine on timber floor structures. Engineering Structures, 196, 109343. https://doi.org/10.1016/j.engstruct.2019.109343
Osario, M., Pereyra, C. J., Gau, D. L., & Laguarda, A. (2017). Measuring and characterizing beat phenomena with a smartphone. European Journal of Physics, 39(2), 1–12. https://doi.org/10.1088/1361-6404/aa9034 Manuscript
Parolin, S. O., & Pezzi, G. (2015). Kundt’s tube experiment using smartphones. Physics Education, 50(4), 443–447. https://doi.org/10.1088/0031-9120/50/4/443
Pereira da Silva, W., Precker, J. W., e Silva, D. D. P. S., & e Silva, C. D. P. S. (2005). The speed of sound in air: An at-home experiment. The Physics Teacher, 43(4), 219–221. https://doi.org/10.1119/1.1888080
Pili, U. B. (2020). Sound-based measurement of g using a door alarm and a smartphone: Listening to the simple pendulum. Physics Education, 55(3). https://doi.org/10.1088/1361-6552/ab6e00
Puspitasari, K. A., & Oetoyo, B. (2018). Successful students in an open and distance learning system. Turkish Online Journal of Distance Education, 19(2), 189–200. https://doi.org/https://doi.org/10.17718/tojde.415837
Serway, R. A., & Jewett, J. W. (2018). Physics for scientists and engineers. Cengage learning.
Staacks, S., Heinke, H., & Stampfer, C. (2019). Simple time-of-flight measurement of the speed of sound using smartphones. The Physics Teacher, 57(112). https://doi.org/10.1119/1.5088474
Thees, M., Hochberg, K., Kuhn, J., & Aeschlimann, M. (2017). Adaptation of acoustic model experiments of STM via smartphones and tablets. The Physics Teacher, 55(7), 436–437. https://doi.org/10.1119/1.5003749
Tipler, P. A., & Mosca, G. P. (2010). Physics for scientists and engineers: With modern physics. Wh Freeman.
Trinh, V. (1994). Measurement of sound intensity and sound power. In DSTOMaterials Research Laboratory.
Tsiatis, N. E. (2015). Understanding distance shooting and the type of rearm from the analysis of gunshot sounds. European Police Science and Research Bulletin, 15, 93–107.
Vogt, P., Hirth, M., & Kuhn, J. (2014). Analyzing the acoustic beat with mobile devices. The Physics Teacher, 52, 248–250. https://doi.org/10.1119/1.4868948
Wisman, R. F., Spahn, G., & Forinash, K. (2018). Time measurements with a mobile device using sound. Physics Education, 52, 035012.
Yafuz, A. (2015). Measuring the speed of sound in water. Physics Education, 50(6), 727–732. https://doi.org/10.1088/0031-9120/50/6/727
Yavuz, A., & Temiz, B. K. (2016). Detecting interferences with iOS applications to measure speed of sound. Physics Education, 51(1). https://doi.org/10.1088/0031-9120/51/1/015009
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v10i1.8180
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.