Determining Optical Band Gap Energy of Chitosan Biopolymer Film as the Effect of Gamma Rays Irradiation

Dhita Ariyanti, Kartini Megasari

Abstract


Dosimeter is one of the apparatus needed by radiation workers. From a dosimeter, radiation workers can control the absorbed dose. This research aims to investigate the properties characteristics of chitosan film for dosimeter usage. Thin-film chitosan polymer blended starch and methyl orange were prepared by phase inversion methods. The spectra were investigated by UV-Visible spectrophotometric in the wavelength range of 400-500 nm, while the optical band gap energy was investigated by the Tauch plot method. The increase in gamma rays irradiation dose affected the optical bandgap energy. It was observed that the value of band gap energy within the direct transition, indirect transition, and direct forbidden transition decreased along with the increase of gamma rays irradiation 3 and 7 kGy doses. These results indicated that gamma-ray irradiation could cause structural defects due to the excitation of non-bonding electrons. These structural defects could reduce the value of band gap energy because of the width localized states.

Keywords


chitosan; gamma rays; optical band gap

Full Text:

PDF

References


Aarya, S., Dev, K., Kumar, S., Krishna, J. B. M., & Wahab, M. A. (2012). Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer. Radiation Physics and Chemistry, 81(4), 458–462. https://doi.org/10.1016/j.radphyschem.2011.12.023

Alsaad, A. M., Al-Bataineh, Q. M., Ahmad, A. A., Albataineh, Z., & Telfah, A. (2020). Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra. Optik, 211 (1), 1-8. https://doi.org/10.1016/j.ijleo.2020.164641

American Nuclear Society. (2014). Medical use of radioisotopes. Annual review of nuclear medical of center for nuclear science and technology information. USA. American Nuclear Society.

Ariyanti. (2020). Synthesis of bio-polymer based chitosan and starch with methyl orange dyes as a material potential for low dose gamma film dosimeter. IOP Conf. Series: Journal of Physics: Conf. Series 1436(1), 1-8. https://doi.org/doi:10.1088/1742-6596/1436/1/012018

Asai, K., Koshimizu, M., Fujimoto, Y., & Asai, K. (2020). Radiochromic properties of organic films based on a diarylethene molecule. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954(2), 1-4 https://doi.org/10.1016/j.nima.2019.01.054

Ashok, J., Brik, M. G., Ravi Kumar, V., & Veeraiah, N. (2020). Energy band structure and optical band gap calculations of AgSbO3 photo-catalystic pyrochlore crystal phase embedded in Ag2O doped sodium antimonate glass ceramics. Optik, 206(2), 1-7. https://doi.org/10.1016/j.ijleo.2020.164345

Aziz, S. B., Rasheed, M. A., Hussein, A. M., & Ahmed, H. M. (2017). Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: Structural and optical properties. Materials Science in Semiconductor Processing, 71(1), 197–203. https://doi.org/10.1016/j.mssp.2017.05.035

Babu, M. H., Podder, J., Dev, B. C., & Sharmin, M. (2020). p to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and Interfaces, 19(1), 100459. https://doi.org/10.1016/j.surfin.2020.100459

Beshir, W. B. (2013). Radiation sensitive indicator based on tetrabromophenol blue dyed poly (vinyl alcohol). Radiation Physics and Chemistry, 86, (3), 129–135. https://doi.org/10.1016/j.radphyschem.2013.01.019

Bouzourâa, M., Battie, Y., Naciri, A. E., Araiedh, F., Ducos, F., & Chaoui, N. (2019). 2 ion bombardment e ff ect on the band gap of anatase TiO 2 ultrathin fi lms. 88(2), 282–288. https://doi.org/10.1016/j.optmat.2018.11.045

Chikaoui, K. (2019). Gamma rays irradiation e ff ects in thin fi lm polyethylene terephthalate polymer. Radiation Physics and Chemistry. 162(1), 18–22. https://doi.org/10.1016/j.radphyschem.2019.04.034

El-nahass, M. M., Abd-el-rahman, K. F., Zeyada, H. M., & Darwish, A. A. A. (2012). Influence of γ-irradiation on the optical parameters of 4-tricyanovinyl-N,N-diethylaniline thin filems. Optics Communication. 285(12), 2864–2867. https://doi.org/10.1016/j.optcom.2012.02.025

Gafar, S. M., & El-Ahdal, M. A. (2014). Dosimetric characteristics of 2,6 di-nitro phenol for high dose dosimetry. Dyes and Pigments, 109(2), 67–71. https://doi.org/10.1016/j.dyepig.2014.05.001

Gafar, S. M., El-Kelany, M. A., El-Ahdal, M. A., & El-Shawadfy, S. R. (2014). Toluidine Blue O-Gelatin Gel Dosimeter for Radiation Processing. Open Journal of Polymer Chemistry, 04(03), 56–61. https://doi.org/10.4236/ojpchem.2014.43007

Gafar, S. M., El-Kelany, M. A., & El-Shawadfy, S. R. (2018). Spectrophotometric properties of azo dye metal complex and its possible use as radiation dosimeter. Journal of Radiation Research and Applied Sciences, 11(3), 190–194. https://doi.org/10.1016/j.jrras.2018.01.004

Ghobadi, N., Sohrabi, P., & Reza Hatami, H. (2020). Correlation between the photocatalytic activity of CdSe nanostructured thin films with optical band gap and Urbach energy. Chemical Physics, 538(2), 110911. https://doi.org/10.1016/j.chemphys.2020.110911

Government, U. S. (2019). The Ultimate Fast Facts Guide to Nuclear Energy. Annual Review of Nuclear Energy Office of Nuclear Energy. United States Department of Energy.

Kattan, M., al Kassiri, H., & Daher, Y. (2011). Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry. Applied Radiation and Isotopes, 69(2), 377–380. https://doi.org/10.1016/j.apradiso.2010.11.006

Kumar, A., Kumar, R., Verma, N., Anupama, A. V., Choudhary, H. K., Philip, R., & Sahoo, B. (2020). Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets. Optical Materials, 108(2), 110-163. https://doi.org/10.1016/j.optmat.2020.110163

Mamedov, D., Yakubov, K., Bazarbaev, R. B., Ismailov, K., Senthilarasu, S., & Zh. Karazhanov, S. (2020). Methods of estimations of the band gap for kesterite Cu2ZnSnS(Se)4. Materials Today: Proceedings, 33(1), 2495–2498. https://doi.org/10.1016/j.matpr.2020.04.242

Merazga, A., Al-Zahrani, J., Al-Baradi, A., Omer, B., Badawi, A., & Al-Omairy, S. (2020). Optical band-gap of reduced graphene oxide/TiO2 composite and performance of associated dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 259(3), 1-7. https://doi.org/10.1016/j.mseb.2020.114581

Mergen, Ö. B., & Arda, E. (2020). Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synthetic Metals. 269(3), 1-9. https://doi.org/10.1016/j.synthmet.2020.116539

Palupi et al., (2019). Micro-Raman analysis of Ba0.2Sr0.8TiO3 (barium strontium titanate) doped of chlorophyll of cassava leaf. Ferroelectrics, 540 (1), 1-8

https://doi.org/10.1080/00150193.2019.1611116

Paul, J., Kumar, V., & Varshney, L. (2014). Development of a reactive red 120 dye based task-specific gamma radiation dosimeter. Radiation Physics and Chemistry, 96(1), 195–200. https://doi.org/10.1016/j.radphyschem.2013.10.005

Pradhan, P., Naik, R., Das, N., & Panda, A. K. (2018). Band gap tuning in As40Se53Sb07 thin films by 532 nm laser irradiation: An optical investigation by spectroscopic techniques. Optical Materials, 75(2), 699–709. https://doi.org/10.1016/j.optmat.2017.11.037

Ramesh Babu, A., & Yusub, S. (2020). Ascendancy of iron ions on lithium ion conductivity, optical band gap, Urbach energy and topology of LiF-SrO-B2O3 glasses. Journal of Non-Crystalline Solids, 533(1), 1-6. https://doi.org/10.1016/j.jnoncrysol.2020.119906

Sangiorgi, N., Aversa, L., Tatti, R., Verucchi, R., & Sanson, A. (2017). Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64(2), 18–25. https://doi.org/10.1016/j.optmat.2016.11.014

Sharma, I., Reddy Madara, S., & Sharma, P. (2019). Study of Tauc gap, optical density and penetration depth of vacuum evaporated Pb15Se85-xGex (x = 0, 3, 6 at. %) thin films supported by chemical bond approach and physical parameters. Materials Today: Proceedings, 28(1), 402–407. https://doi.org/10.1016/j.matpr.2019.10.023

Sharma, S., & Kumar, M. (2020). Band gap tuning and optical properties of BiFeO3 nanoparticles. Materials Today: Proceedings, 28(1), 168–171. https://doi.org/10.1016/j.matpr.2020.01.496

Singh, J., Verma, V., Kumar, R., & Kumar, R. (2019). Results in Physics Influence of Mg 2 + -substitution on the optical band gap energy of Cr 2−x Mg x O 3 nanoparticles. Results in Physics, 13(1), 1-8. https://doi.org/10.1016/j.rinp.2019.02.042

Suman, S. K., Dubey, K. A., Mishra, B. B., Bhardwaj, Y. K., Mondal, R. K., Seshadri, M., Natarajan, V., & Varshney, L. (2015). Synthesis of a flexible poly(chloroprene)/methyl red film dosimeter using an environment-benign shear compounding method. Applied Radiation and Isotopes, 98(3), 60–65. https://doi.org/10.1016/j.apradiso.2015.01.021

Wang, W., Wen, W. F., Liu, C. S., He, L. F., Zhang, Y., Yang, S. L., & Chen, W. T. (2020). Syntheses, structures, solid-state photoluminescence and optical band gaps of two novel heterometallic lanthanide/mercury compounds. Journal of Solid State Chemistry, 291(2), 1-10. https://doi.org/10.1016/j.jssc.2020.121623

Zaki, M. F. Ã., & Elmaghraby, E. K. (2012). Photoluminescence of gamma-radiation induced defect on poly allyl diglycol carbonates. Journal of Luminescence, 132(1), 119–121. https://doi.org/10.1016/j.jlumin.2011.08.001




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v10i1.8508

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.