Design and Construction of Duku Sorting System Based on Size Using a Microcontroller on Conveyor Work

Martinus Martinus, Meizano Ardhi Muhammad, Mareli Telaumbanua, Rifqi Rhama Andrianto, Sony Ferbangkara

Abstract


Duku (Lansuim Domesticum Corr)fruit harvesting is generally done manually by farmers in Indonesia so that the quality of the duku fruit, especially the uniformity of size, is not considered. The impact of this harvesting is a decrease in fruit quality and a decrease in selling prices. It is necessary to develop a new sorting machine for duku so that the fruit size is accurate. This research aims to make a sorting system for duku fruit based on size using a microcontroller on conveyor work. The sorting system uses two sensors, VL53L0X and FC-51. The design has a servo actuator to separate the fruit classes. This study developed a correct sorting of duku fruit sizes up to 97.4%, counting accuracy up to 99.4%, system stability up to 96.65%, and transient response of 100 ms. The result of testing this tool is that the ability of the Duku fruit sorting system based on size has a stability value of 96.6%. The transient response obtained is 100ms. The accuracy of the perfect sorting results is 97.4%, and the calculation of the number of duku using the system is 99.4%. The conclusion is that the researchers can create a sorting system based on size using a microcontroller on conveyor work.

Keywords


Duku; Microcontroller; Quality; Sorting.

Full Text:

PDF

References


W. Warji, S. Asmara, and S. Suharyatun, “Rancang Bangun dan Uji Kinerja Mesin Sortasi Buah Duku,” J. KETEKNIKAN Pertan., vol. 21, no. 2, 2007.

Martinus and A. Djausal, “Small Format Aerial Photography dengan Auto Kite Aerial Photography berbasisArduino,” no. SNTTM XII, pp. 23–24, 2013.

M. Martinus et al., “Pengembangan Sistem Sortasi Buah Duku (Lansium Domesticum) Berdasar Warna Menggunakan Mikrokontroler Arduino dan Sensor Warna As7262,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 2, 2022, doi: 10.23960/jitet.v10i2.2446.

G. Mahardhian Dwi Putra, D. Ajeng Setiawati, and S. Sumarjan, “Rancang Bangun Sistem Sortasi Kematangan Buah Semi Otomatis Berbasis Arduino,” J. Teknotan, vol. 12, no. 1, 2018, doi: 10.24198/jt.vol12n1.6.

R. Siskandar, N. A. Indrawan, B. R. Kusumah, and S. H. Santosa, “Penerapan Rekayasa Mesin Sortir sebagai Penentu Kematangan Buah Jeruk dan Tomat Merah Berbasis Image Processing [Implementation of Sortir Machine Engineering as Determination of Maturity of Orange and Red Tomato Based on Image Processing],” J. Tek. Pertan. Lampung, vol. 9, no. 3, pp. 222–236, 2020, doi: http://dx.doi.org/10.23960/jtep-l.v9.i3.222-236

H. Nur’aini and S. Apriyani, “ISSN : 2407 - 1315 AGRITEPA, Vol. I, No. 2, Januari-Juni 2015,” AGRITEPA, vol. I, no. 2, pp. 195–210, 2015.

A. Istiadi, S. R. Sulistiyanti, Herlinawati, and H. Fitriawan, “Model Design of Tomato Sorting Machine Based on Artificial Neural Network Method Using Node MCU Version 1.0,” J. Phys. Conf. Ser., vol. 1376, no. 1, 2019, doi: 10.1088/1742-6596/1376/1/012026.

A. James and V. Zikankuba, “Postharvest Management of Fruits and Vegetable: A Potential for Reducing Poverty, Hidden Hunger And Malnutrition in sub-Sahara Africa,” Cogent Food Agric., vol. 3, no. 1, 2017, doi: 10.1080/23311932.2017.1312052.

G. Velmurugan, E. Palaniswamy, M. Sambathkumar, R. Vijayakumar, and T. M. Sakthimuruga, “Conveyor Belt Troubles (Bulk Material Handling),” Int. J. Emerg. Eng. Res. Technol., vol. 2, no. 3, pp. 21–30, 2014.

G. V. R. Seshagiri Rao and M. A. Ali, “Design and Analysis of Flip Type Scrapper for Belt Conveyor System,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 3291–3294, 2019, doi: 10.35940/ijitee.L2806.1081219.

L. Liu, “The Process to Design an Automation System,” J. Phys. Conf. Ser., vol. 1087, no. 4, 2018, doi: 10.1088/1742-6596/1087/4/042001.

T. B. Sheridan and R. Parasuraman, “Human-Automation Interaction,” Rev. Hum. Factors Ergon., vol. 1, no. 1, pp. 89–129, 2005, doi: 10.1518/155723405783703082.

C. Coombs, D. Hislop, S. K. Taneva, and S. Barnard, “The Strategic Impacts of Intelligent Automation for Knowledge and Service Work: An Interdisciplinary Review,” J. Strateg. Inf. Syst., vol. 29, no. 4, p. 101600, 2020, doi: 10.1016/j.jsis.2020.101600.

H. Taherdoost, “Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research,” SSRN Electron. J., vol. 5, no 3, pp. 28-36, 2016, doi: 10.2139/ssrn.3205040.

T. Hiranyachattada, K. Kusirirat, K. Kamolchaipisit, and P. Jaiboonlue, “Demonstration of Light Reflection Concepts for Rendering Realistic 3D Tree Images,” J. Phys. Conf. Ser., vol. 2145, no. 1, 2022, doi: 10.1088/1742-6596/2145/1/012074.

Y. F. Yeh, T. H. Jen, and Y. S. Hsu, “Major Strands in Scientific Inquiry through Cluster Analysis of Research Abstracts,” Int. J. Sci. Educ., vol. 34, no. 18, pp. 2811–2842, 2012, doi: 10.1080/09500693.2012.663513.

Syaifudin, T. Rahmawati, S. R. Jannah, S. K. Gupta, and R. Gopal, “Analysis of the Drop Sensors Accuracy in Central Peristaltic Infusion Monitoring Displayed on PC Based Wireless (TCRT5000 Drop Sensor),” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 2, pp. 55–61, 2022, doi: 10.35882/jeeemi.v4i1.5.

M. A. Prasetyo and H. K. Wardana, “Rancang Bangun Monitoring Solar Tracking System Menggunakan Arduino dan Nodemcu Esp 8266 Berbasis IoT,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 2, pp. 163–168, 2021.

D. Wahlborg, M. Björling, and M. Mattsson, “Evaluation of Field Calibration Methods and Performance of AQMesh, a low-cost air quality monitor,” Environ. Monit. Assess., vol. 193, no. 5, pp. 1–21, 2021, doi: 10.1007/s10661-021-09033-x.

I. Z. L. Meyer and J. E. M. Barros, “Characterization of Small Brushless Motors for Unmanned Aerial Vehicles/ Caracterização de motores Brushless de pequeno porte para veículos aéreos não tripulados,” Brazilian J. Dev., vol. 7, no. 6, pp. 63447–63463, 2021, doi: 10.34117/bjdv7n6-631.

N. Sen, S. Deb, D. Sungoh, and S. Das, “Automatic Climate Control of a Greenhouse: A Review,” ADBU J. Electr. Electron. Eng., vol. 2, no. 1, pp. 14–16, 2018.

E. M. Fauzi, M. B. Z. Asyikin, and I. Y. Prasetya, “Analisa dan Solusi Noise Sensor VL53L0X pada Berbagai Kondisi Cahaya,” 9th Ind. Reasearch Work. Natl. Semin., October, pp. 3–7, 2018, [Online]. Available: https://jurnal.polban.ac.id/index.php/proceeding/article/viewFile/1088/889

Hendri, “Peningkatan Kapasitas Overhead Conveyor dilini Produksi Electrodeposition Studi Kasus: Di PT. XYZ,” J. PASTI, vol. X, no. 2, pp. 9–25, 2016.

M. Reckling et al., “Methods of Yield Stability Analysis in Long-Term Field Experiments. A review,” Agron. Sustain. Dev., vol. 41, no. 2, 2021, doi: 10.1007/s13593-021-00681-4.

K. Ogata, Modern Control Engineering. New Jersey: Pearson Education, Inc., 2017. doi: 10.1201/9781315214573.




DOI: http://dx.doi.org/10.24042/ijecs.v1i2.10612

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.