Palm Tree Coplanar Vivaldi Antenna Array on the Same Substrate Size: Design and Performance Evaluation

Nurhayati Nurhayati, Alexandre Manicoba De Oliveira, Mohd Najib Bin Mohd Yasin, Dayat Kurniawan

Abstract


This paper aims to describe the performance of the palm tree Coplanar Vivaldi Antenna Array (CVA) that was simulated from 0.25-6.25 GHz in terms of return loss and radiation pattern. Palm Tree Coplanar Vivaldi Antenna is available in four different configurations: single-element, two-element array, four-element array, and an eight-element array. We create a feeding network and radiator patch for two, four, and eight-array antennas. The simulation results demonstrate that the single-element antenna has the best return loss performance and can cover all frequency work from 0.25-6.25 GHz. In contrast, the antenna array can only cover multiband frequency. At 3 GHz, a single-element antenna has a directivity of 8.77 dBi, a sidelobe level of -2.2 dB, and a beamwidth of 63.70. In contrast, an antenna array of 8 elements has a directivity of 15.5 dBi, a sidelobe level of -12.6 dB, and a beamwidth of 80. Using the same substrate size, by configuring the Vivaldi Coplanar antenna to be an array at a frequency of 3 GHz, the 1×8 array antenna has a 6.73dBi improvement in directivity, a 10.4 dB boost in side lobe level, and a 55.70 enhanced in beamwidth performance compared to a single element. According to the simulation findings, the radiation pattern performance of the. Palm Tree CVA is greater than a single element in the same substrate size. Good directivity, SLL, and beamwidth performance make the proposed Palm Tree CVA array suitable for integration in telecommunication, radar, or cognitive radio applications.


Keywords


Antenna; Array; Radiation Pattern; Vivaldi

Full Text:

PDF

References


Y. Chareonsiri, W. Thaiwirot, and P. Akkaraekthalin, “Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation,” Frequenz, vol. 71, no. 5–6, pp. 251–260, 2017, doi: 10.1515/freq-2016-0131.

C. Zhang, Y. Hu, X. Jin, and X. Huang, “High-Performance Linearity Tapered Slot Antenna (LTSA) Using Parasitic Patch,” in Asia-Pacific Conference on Antennas and Propagation (APCAP), 2017, pp. 7–9, doi: 10.1109/APCAP.2017.8420555.

A. Rittiplang and P. Phasukkit, “1-Tx/5-Rx Through-Wall UWB Switched-Antenna-Array Radar for Detecting Stationary Humans,” Sensors, pp. 2–17, 2020.

M. Moosazadeh, S. Kharkovsky, J. T. Case, and B. Samali, “Miniaturized UWB Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens,” IEEE Antennas Wirel. Propag. Lett., 2017, doi: 10.1109/LAWP.2016.2633536.

L. Sang, S. Wu, G. Liu, J. Wang, and W. Huang, “High-Gain UWB Vivaldi Antenna Loaded with Reconfigurable 3-D Phase Adjusting Unit Lens,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 2, pp. 322–326, 2020, doi: 10.1109/LAWP.2019.2961393.

Y. Chen, Y. He, W. Li, L. Zhang, S. W. Wong, and A. Boag, “A 3-9 GHz UWB High-Gain Conformal End-Fire Vivaldi Antenna Array,” 2021 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. APS/URSI 2021 - Proc., pp. 737–738, 2021, doi: 10.1109/APS/URSI47566.2021.9703714.

X. Shi, Y. Cao, Y. Hu, X. Luo, H. Yang, and L. H. Ye, “A High-Gain Antipodal Vivaldi Antenna With Director and Metamaterial at 1–28 GHz,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 12, pp. 2432–2436, 2021.

G. Virone, R. Sarkis, C. Craeye, G. Addamo, and O. A. Peverini, “Gridded Vivaldi Antenna Feed System for the Northern Cross Radio Telescope,” IEEE Trans. Antennas Propag., 2011, doi: 10.1109/TAP.2011.2122227.

A. Slimani and S. D. Bennani, “Conception and Optimization of a Bidirectional Ultra Wide Band Planar Array Antennas for C-Band Weather Radar Applications,” pp. 4–10, 2016.

J. B. Yan and S. Gogineni, “A Mechanically Robust Modular Vivaldi Array Panel for Ultra-wideband Sensing Applications,” in IEEE Antennas and Propagation Society International Symposium, Proceedings, 2017, pp. 1813–1814, doi: 10.1109/APUSNCURSINRSM.2017.8072949.

J. B. Yan, S. Gogineni, B. Camps-Raga, and J. Brozena, “A Dual-Polarized 2-18-GHz Vivaldi Array for Airborne Radar Measurements of Snow,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 781–785, 2016, doi: 10.1109/TAP.2015.2506734.

A. Ahmed, Y. Zhang, D. Burns, D. Huston, and T. Xia, “Design of UWB antenna for air-coupled impulse ground-penetrating radar,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 92–96, 2016, doi: 10.1109/LGRS.2015.2498404.

B. Guan, A. Ihamouten, X. Derobert, D. Guilbert, S. Lambot, and G. Villain, “Near-Field Full-Waveform Inversion of Ground-Penetrating Radar Data to Monitor the Water Front in Limestone,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 10, pp. 4328–4336, 2017, doi: 10.1109/JSTARS.2017.2743215.

H. J. Martinez, S. Alvarez, and M. A. Yarleque, “Assessing the performance of three type of UWB antennas for FMCW GPR imaging,” Proc. 2018 20th Int. Conf. Electromagn. Adv. Appl. ICEAA 2018, pp. 620–622, 2018, doi: 10.1109/ICEAA.2018.8520505.

A. S. Dixit and S. Kumar, “A Survey of Performance Enhancement Techniques of Antipodal Vivaldi Antenna,” IEEE Access, vol. 8, pp. 45774–45796, 2020, doi: 10.1109/ACCESS.2020.2977167.

N. Nurhayati, A. M. De Oliveira, J. F. Justo, E. Setijadi, B. E. Sukoco, and E. Endryansyah, “Palm tree coplanar Vivaldi antenna for near field radar application,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 964–974, 2020, doi: 10.1002/mop.32127.

E. Setijadi, P. Handayani, and C. S. Raden Mirza, “Mutual Coupling Reduction of 1×2 Microstrip Array Antenna Using MMAS-SSR,” Int. J. Commun. Antenna Propag., vol. 9, no. 4, pp. 263–270, 2019, doi: 10.15866/irecap.v9i4.16024.

P. Prasanna Kumar and P. Saxena, “High Gain Metamaterial Loaded Antipodal Tapered Slot Antenna for Millimeter Wave Applications,” SPCOM 2020 - Int. Conf. Signal Process. Commun., vol. 1, pp. 7–11, 2020, doi: 10.1109/SPCOM50965.2020.9179599.

T. P. Wibowo and F. Y. Zulkifli, “Design of FMCW ground penetrating radar for concrete inspection at ISM band 2.4-2.5 GHz,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 2019-Decem, pp. 1232–1234, 2019, doi: 10.1109/APMC46564.2019.9038748.

M. N. S. Array, “Experimental Breast Phantom Imaging with Metamaterial-Inspired Nine-Antenna Sensor Array,” 2018, doi: 10.3390/s18124427.

N. Nurhayati, A. M. De Oliveira, J. F. Justo, E. Setijadi, B. E. Sukoco, and E. Endryansyah, “Palm tree coplanar Vivaldi antenna for near field radar application,” Microw. Opt. Technol. Lett., vol. 62, no. 2, 2020, doi: 10.1002/mop.32127.

A. Irfansyah, B. B. Harianto, and N. Pambudiyatno, “Design of Rectangular Microstrip Antenna 1x2 Array for 5G Communication,” J. Phys. Conf. Ser., vol. 2117, no. 1, 2021, doi: 10.1088/1742-6596/2117/1/012028.

G. M. Bayero, H. Kah Wye, and S. Sree, “Design of Antenna Array for Breast Tumor Detection,” Int. J. Infrastruct. Res. Manag., vol. 9, no. 2, pp. 94–103, 2021, [Online]. Available: https://iukl.edu.my/rmc/publications/ijirm/.

Y. Rahayu and M. Andika, “Dualband Microstrip Elliptic Patch 1x4 MIMO Antenna Design for 5G System Device,” Int. J. Electr. Energy Power Syst. Eng., vol. 4, no. 2, pp. 154–158, 2021, doi: 10.31258/ijeepse.4.2.154-158.




DOI: http://dx.doi.org/10.24042/ijecs.v2i2.14221

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.