Near Infrared -Visible Photonic Bandgap in One-Dimensional Periodic Photonic Crystal Structure Composed of Tio2/Te Layers

Shalaw Saman Khalid, Sarkew Salah Abdulkareem, Sana Latif Ahmed, Sana Dishad Talib, Shahla Ahmed Ghidan

Abstract


In this present paper, we consider some features of the states of one-dimensional photonic crystals. Form the numerical results performed by transfer matrix method in periodic multilayer structure made of titanium dioxide and tellurium material, it is found that the structure possesses a photonic band gap it was determined that the structure has a photonic band gap in the borderline visible and infrared spectral region. Our predictions were in good agreement with the photonic bandgap tuning. Our simple model can also predict and explain the effect of incidence angle and wavelength and number of layers on the photonic bandgap. We expect such structures to play an important role in micromechanical tunable optical sensors and filters.


Keywords


Photonic crystal; Transfer matrix method; Titanium dioxide; Tellurium; Photonic bandgap.

Full Text:

PDF

References


S. R. Entezar, “Photonic Crystal Wedge As A Tunable Multichannel Filter,” Superlattices Microstruct., vol. 82, no. June, pp. 33–39, 2015, doi: 10.1016/j.spmi.2015.01.039.

C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater., vol. 15, no. 20, pp. 1679–1704, 2003, doi: 10.1002/adma.200300386.

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486–2489, 1987, doi: 10.1103/PhysRevLett.58.2486.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, no. 20, p. 2059.

X. Lv et al., “Research Progress in Preparation and Application of Photonic Crystals,” Chinese J. Mech. Eng., vol. 36, no. 1, pp. 1–17, 2023, doi: 10.1186/s10033-023-00836-2.

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express, vol. 22, no. 23, pp. 28623-28634, 2014, doi: 10.1364/oe.22.028623.

A. H. Aly, Z. A. Zaky, A. S. Shalaby, A. M. Ahmed, and D. Vigneswaran, “Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor,” Phys. Scr., vol. 95, no. 3, 2020, doi: 10.1088/1402-4896/ab53f5.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 62, no. 16, pp. 10696–10705, 2000, doi: 10.1103/PhysRevB.62.10696.

A. Madani and S. R. Entezar, “Optical properties of one-dimensional photonic crystals containing graphene sheets,” Phys. B Condens. Matter, vol. 431, pp. 1–5, 2013, doi: 10.1016/j.physb.2013.08.041.

Y. Trabelsi and M. Kanzari, “Omnidirectional reflection from deformed quasiperiodic one-dimensional photonic crystals in high frequency,” Phys. Procedia, vol. 2, no. 3, pp. 947–951, 2009, doi: 10.1016/j.phpro.2009.11.048.

H. Rahimi, “Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range,” Opt. Mater. (Amst)., vol. 57, pp. 264–271, 2016, doi: 10.1016/j.optmat.2016.04.022.

R. D. V. Meade, S. G. Johnson, and J. N. Winn, Photonic Crystals Molding the Flow of Light. United Kingdom: Princeton University Press, 305AD.

R. B. Wehrspohn, H. S. Kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics and Metamaterials, vol. 204, no. 11. Wiley-VCH, 2008.

K. Sakoda, Optical Properties of Photonic Crystals. New York: Springer Berlin Heidelberg, 2007.

A. Kumar, K. B. Thapa, and S. P. Ojha, “A Tunable Broadband Filter of Ternary Photonic Crystal Containing Plasma and Superconducting Material,” Indian J. Phys., vol. 93, no. 6, pp. 791–798, 2019, doi: 10.1007/s12648-018-1335-9.

A. Kumar, N. Kumar, and K. B. Thapa, “Tunable Broadband Reflector and Narrowband Filter of a Dielectric and Magnetized Cold Plasma Photonic Crystal,” Eur. Phys. J. Plus, vol. 133, no. 7, pp. 1-8, 2018, doi: 10.1140/epjp/i2018-12073-3.

A. Kumar, P. P. Singh, and K. B. Thapa, “A New Idea for Broad Band Reflector and Tunable Multichannel Filter of One Dimensional Symmetric Photonic Crystal with Magnetized Cold Plasma Defects,” AIP Conf. Proc., vol. 1953, pp. 1–5, 2018, doi: 10.1063/1.5032774.

A. Kumar, P. Singh, K. Pal, N. Kumar, and K. B. Thapa, “Broadband reflector of 1D photonic crystal containing TiO2/SiO2material at visible region,” AIP Conf. Proc., vol. 2220, no. May, pp. 2–6, 2020, doi: 10.1063/5.0002138.

K. S. J. Wilson, and V. Revathy, “Investigation of Photonic Band Gap in Si-Based One-Dimensional Photonic Crystal,” vol. 2013, no. December, pp. 365–368, 2013, doi: 10.4236/opj.2013.38057.

S. V. Gaponenko, “Introduction to nanophotonics,” Fundam. Appl. Nanophotonics, pp. 1–11, 2016, doi: 10.1016/B978-1-78242-464-2.00001-4.

S. Massaoudi, A. De Lustrac, and I. Huynen, “Properties of Metallic Photonic Band Gap Material with Defect at Microwave Frequencies: Calculation and Experimental Verification,” J. Electromagn. Waves Appl., vol. 20, no. 14, pp. 1967–1980, 2006, doi: 10.1163/156939306779322710.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of Total Omnidirectional Reflection From a One-Dimensional Dielectric Lattice,” Appl. Phys. A Mater. Sci. Process., vol. 68, no. 1, pp. 25–28, 1999, doi: 10.1007/s003390050849.

Y. Fink et al., “A Dielectric Omnidirectional Reflector,” Science (80-. )., vol. 282, no. 5394, pp. 1679–1682, 1998, doi: 10.1126/science.282.5394.1679.

C. F. Ramirez-Gutierrez, H. D. Martinez-Hernandez, I. A. Lujan-Cabrera, and M. E. Rodriguez-García, “Design, fabrication, and optical characterization of one-dimensional photonic crystals based on porous silicon assisted by in-situ photoacoustics,” Sci. Rep., vol. 9, no. 1, pp. 1–15, 2019, doi: 10.1038/s41598-019-51200-1.

E. Gondek and P. Karasiński, “One-dimensional photonic crystals as selective back reflectors,” Opt. Laser Technol., vol. 48, pp. 438–446, 2013, doi: 10.1016/j.optlastec.2012.11.012.

F. K. Mbakop, N. Djongyang, and D. Raїdandi, “One–dimensional TiO2/SiO2 photonic crystal filter for thermophotovoltaic applications,” J. Eur. Opt. Soc., vol. 12, no. 1, 2016, doi: 10.1186/s41476-016-0026-4.

F. K. Mbakop, N. Djongyang, G. W. Ejuh, D. Raїdandi, and P. Woafo, “Transmission of light through an optical filter of a one-dimensional photonic crystal: application to the solar thermophotovoltaic system,” Phys. B Condens. Matter, vol. 516, pp. 1–29, 2017, doi: 10.1016/j.physb.2017.04.033.

S. Jena et al., “Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal,” Thin Solid Films, vol. 599, pp. 138–144, 2016, doi: 10.1016/j.tsf.2015.12.069.

P. J. Kim, S. Y. Park, M. D. Huang, Y. H. Lu, Y. P. Lee, and J. Y. Rhee, “Fabrication of oxide materials for one-dimensional photonic crystals,” J. Korean Phys. Soc., vol. 49, no. 3, pp. 869–872, 2006.

Pochi Yeh, Optical Waves in Layered Media. Wiley-Interscience Publication, 2005.

X. H. Deng, J. R. Yuan, W. Q. Hong, and H. Ouyang, “Tunable filters based on Thue-Morse quasicrystals composed of single-negative materials,” Phys. Procedia, vol. 22, pp. 360–365, 2011, doi: 10.1016/j.phpro.2011.11.056.

S. Rashidi, A. Rashidi, and S. R. Entezar, “Tunable NIR Absorption in a Ge2Sb2Te5-based 1D Asymmetric Nonlinear Hybrid Nanostructure,” Opt. Laser Technol., vol. 157, no. January 2023, p. 108664, 2023, doi: 10.1016/j.optlastec.2022.108664.

Y. Zhang et al., “A New Method Study of Spectral Measurement and Prediction Based On The Nonlinear Solution Concentration of Alcohol,” Phys. B Condens. Matter, vol. 516, no. April, pp. 32–35, 2017, doi: 10.1016/j.physb.2017.04.019.

A. Y. Herrera, Dual-Periodic Photonic Crystal Structures. Croatia: Intech.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, “Introduction to Optics,” Introd. to Opt., 2017, doi: 10.1017/9781108552493.

C. Wang, “Light field distributions in one-dimensional photonic crystal fibers,”JOSA B, vol. 26, no. 4, pp. 603-609, 2009, doi: 10.1364/JOSAB.26.000603.

E. Diaz-Escobar, L. Mercade, A. I. Barreda, J. Garcia-Ruperez, and A. Martinez, “Photonic Bandgap Closure and Metamaterial Behavior in 1D Periodic Chains of High-Index Nanobricks,” Photonics, vol. 9, no. 10, pp. 1–7, 2022, doi: 10.3390/photonics9100691.

S. Matsushita et al., “Calculation and Fabrication of Two-Dimensional Complete Photonic Bandgap Structures Composed of Rutile TiO2 Single Crystals in Air/Liquid,” J. Mater. Sci., vol. 51, no. 2, pp. 1066–1073, 2015, doi: 10.1007/s10853-015-9436-8.

F. K. Mbakop, A. Tom, A. Dadjé, A. K. C. Vidal, and N. Djongyang, “One-Dimensional Comparison of Tio2/SiO2 and Si/SiO2 Photonic Crystals Filters for Thermophotovoltaic Applications in Visible and Infrared,” Chinese J. Phys., vol. 67, pp. 124–134, 2020, doi: 10.1016/j.cjph.2020.06.004.




DOI: http://dx.doi.org/10.24042/ijecs.v3i1.17120

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.