Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average

Shahnaz Salsabila Ishak, Michael Abednego, Dian Maya Sari, Viyonisa Syafa Sabila, Khoirunnisa Khoirunnisa, Mika Alvionita, Luluk Muthoharoh


The Consumer Price Index is one of the indicators used to confirm financial success in inflation management. This study aims to help determine the CPI prediction value in Indonesia for the next twelve periods in a month using the ARIMA (Autoregressive Integrated Moving Average) method using the data from January 2015 to March 2022. The results obtained show that the best model that can be used for forecasting is the ARIMA model (2,1,2) with drift with Akaike's Information Criterion (AIC) values of 2190.84. The results of Indonesia's accurate CPI forecasting can be used to assess inflation management for policymaking in the context of controlling inflation.It can be concluded that Based on the analysis, the optimal ARIMA model for forecasting Indonesia's CPI is ARIMA (2,1,2) with drift, aiding in evaluating inflation management for policymaking

Full Text:



R. Cisco, K. Arnow, N. Barreto, D. Lin, E. Kebebew, and C. Seib, “Increased Risk of Complications Associated With Concurrent Parathyroidectomy in Patients Undergoing Total Thyroidectomy,” J. Surg. Res., vol. 288, pp. 275–281, 2023, doi: 10.1016/j.jss.2023.02.036.

G. Klazura et al., “Pediatric Surgical Waitlist in Low Middle Income Countries During the COVID-19 Pandemic,” J. Surg. Res., vol. 288, pp. 193–201, 2023, doi: 10.1016/j.jss.2023.02.012.

Bank Indonesia, Buku Petunjuk Tim Pengendali Inflasi Daerah. Jakarta: Bank Indonesia, 2014.

O. Barkan, J. Benchimol, I. Caspi, E. Cohen, A. Hammer, and N. Koenigstein, “Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,” Int. J. Forecast., vol. 39, no. 3, pp. 1145–1162, 2023, doi: 10.1016/j.ijforecast.2022.04.009.

J. Białek, “Improving quality of the scanner CPI: proposition of new multilateral methods,” Qual. Quant., vol. 57, no. 3, pp. 2893–2921, 2023, doi: 10.1007/s11135-022-01506-6.

M. Camacho and G. Lopez-Buenache, “Factor models for large and incomplete data sets with unknown group structure,” Int. J. Forecast., vol. 39, no. 3, pp. 1205–1220, 2023, doi: 10.1016/j.ijforecast.2022.05.012.

D. Kohns and A. Bhattacharjee, “Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model,” Int. J. Forecast., vol. 39, no. 3, pp. 1384–1412, 2023, doi: 10.1016/j.ijforecast.2022.05.002.

A. Camehl, “Penalized estimation of panel vector autoregressive models: A panel LASSO approach,” Int. J. Forecast., vol. 39, no. 3, pp. 1185–1204, 2023, doi: 10.1016/j.ijforecast.2022.05.007.

T.-K. Chen, H.-H. Liao, G.-D. Chen, W.-H. Kang, and Y.-C. Lin, “Bankruptcy prediction using machine learning models with the text-based communicative value of annual reports,” Expert Syst. Appl., vol. 233, p. 120714, 2023, doi:

Zulhamidi and R. Hardianto, “Peramalan Penjualan Teh Hijau dengan Metode ARIMA (Studi Kasus pada PT. MK),” J. PASTI, vol. XI, no. 3, pp. 231–244, 2017.

X. Xiao, K. Chang, K. Xu, M. Lou, and X. Q. Wang, Liping, “Efficient prediction of corrosion behavior in ternary Ni-based alloy systems: Theoretical calculations and experimental verification,” J. Mater. Sci. Technol., vol. 167, pp. 94–106, 2023, doi:

S. Saidi, N. Herawati, and K. Nisa, “Modeling with generalized linear model on covid-19: Cases in Indonesia,” Int. J. Electron. Commun. Syst., vol. 1, no. 1, pp. 25–33, 2021. doi: 10.24042/ijecs.v1i1.9299

E. K. Palupi, R. Umam, R. Junaidi, Y. S. Perkasa, and W. S. M. Sanjaya, “Determining the arm’s motion angle using inverse kinematics models and adaptive neuro-fuzzy interface system,” Int. J. Electron. Commun. Syst., vol. 1, no. 1, pp. 1–9, 2021, doi: 10.24042/ijecs.v1i1.9238.

A. O. Abdulrahman and K. M. Hama Rawf, “Usability Methodologies and Data Selection: Assessing the Usability techniques on Educational Websites,” Int. J. Electron. Commun. Syst., vol. 2, no. 2, pp. 49–56, 2022, doi: 10.24042/ijecs.v2i2.15045.

B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Practical machine learning: Forecasting daily financial markets directions,” Expert Syst. Appl., vol. 233, p. 120840, 2023, doi:

S. Chen, M. Ma, J. Peng, X. He, and Q. Wang, “Rapid prediction method of ZIF-8 immobilized Candida rugosa lipase activity by near-infrared spectroscopy,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 302, p. 123072, 302AD, doi:

Y. Wigati, R. Rais, and I. T. Utami, “Pemodelan Time Series Dengan Proses Arima Untuk Prediksi Indeks Harga Konsumen (Ihk) Di Palu – Sulawesi Tengah,” J. Ilm. Mat. Dan Terap., vol. 12, no. 2, pp. 149–159, 2017, doi: 10.22487/2540766x.2015.v12.i2.7908.

H. M. Mukron, I. Susianti, F. Azzahra, Y. Nur Kumala, F. Risnita Widiyana, and M. Al Haris, “Peramalan Indeks Harga Konsumen Indonesia Menggunakan Autoregressive Integrated Moving Avarage,” J. Stat. Ind. dan Komputasi, vol. 6, no. 1, pp. 20–25, 2021.

A. P. Desvina and E. Desmita, “Penerapan Metode Box-Jenkins dalam Meramalkan Indeks Harga Konsumen di Kota Pekanbaru,” J. Sains Mat. dan Stat., vol. 1, no. 1, pp. 39–47, 2015.

S. N. Afiyah and D. K. Wijaya, “Sistem Peramalan Indeks Harga Konsumen (IHK) Menggunakan Metode Double Exponential smoothing,” J. Ilm. Teknol. Inf. Asia, vol. 12, no. 1, p. 56, 2018, doi: 10.32815/jitika.v12i1.243.

K. B. A. Pimentel et al., “Prediction of visceral leishmaniasis incidence using the Seasonal Autoregressive Integrated Moving Average model (SARIMA) in the state of Maranhão, Brazil,” Brazilian J. Biol., vol. 84, pp. 1–8, 2024, doi: 10.1590/1519-6984.257402.

M. Majidnia, Z. Ahmadabadi, P. Zolfaghari, and A. Khosravi, “Time series analysis of cutaneous leishmaniasis incidence in Shahroud based on ARIMA model,” BMC Public Health, vol. 23, no. 1, pp. 1–7, 2023, doi: 10.1186/s12889-023-16121-9.

M. Y. Darsyah and M. S. Nur, “Model Terbaik Arima Dan Winter Pada Peramalan Data Saham Bank,” J. Stat., vol. 4, no. 1, pp. 30–38, 2016.

M. Octora and Kunotoro, “Perbandingan Metode ARIMA (Box Jenkins) dan Metode Winterdalam Peramalan Jumlah Kasus Demam Berdarah Dengue,” J. Biometrika dan Kependud., 2013.

R. Catalano, J. A. Casey, A. Gemmill, and T. Bruckner, “Expectations of non-COVID-19 deaths during the pre-vaccine pandemic: a process-control approach,” BMC Public Health, vol. 23, no. 1, pp. 1–6, 2023, doi: 10.1186/s12889-022-14829-8.

S. Hosny, E. Elsais, and H. Hosny, “Prediction of construction material prices using ARIMA and multiple regression models,” Asian J. Civ. Eng., vol. 24, pp. 1697–1710, 2023.

K. Huda, C. E. Wibowo, and V. Gunawan, “Implementation of time series forecasting with Box Jenkins ARIMA method on wood production of Indonesian forests,” in 11th International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application (11th ISNPINSA), 2023, p. 2738.

W. W. S. Wei, Time Series Analisis: Univarite and Multivariate, 2nd ed. USA: Pearson Education, Inc., 2006.

D. Rakhmawati, E. Tripustikasari, and E. Model, “Estimasi Model Arima Non Musiman Untuk Memprediksi Data Minyak Dunia,” Konf. Nas. Sist. Inf., pp. 8–9, 2018.

Muryanto, “Pemodelan ARIMA dan SARIMA untuk Peramalan Indeks Harga Konsumen Kota Balikpapan Studi Kasus IHK Kota Balikpapan Bulan Januari 2011-Desember 2020,” BESATARI Bul. Stat. dan Apl. Terkini, vol. 1, no. 2, pp. 21–28, 2021.

K. Tura-Gawron, “The forecasts-based instrument rule and decision making. How closely interlinked? The case of Sweden,” Equilibrium. Q. J. Econ. Econ. Policy, vol. 12, no. 2, pp. 295–315, Jun. 2017, doi: 10.24136/eq.v12i2.16.

R. T. Froyen and A. V. Guender, “What to Aim for? The Choice of an Inflation Objective when Openness Matters,” Open Econ. Rev., vol. 28, no. 1, pp. 167–190, Feb. 2017, doi: 10.1007/s11079-016-9409-9.

P. Atigala, T. Maduwanthi, V. Gunathilake, S. Sathsarani, and R. Jayathilaka, “Driving the pulse of the economy or the dilution effect: Inflation impacting economic growth,” PLoS One, vol. 17, no. 8, p. e0273379, Aug. 2022, doi: 10.1371/journal.pone.0273379.

J. G. Kankpeyeng, I. Maham, and M. Abubakar, “Impact of Inflation on Gross Domestic Product Growth in Ghana,” Ghana J. Dev. Stud., vol. 18, no. 2, pp. 117–137, Nov. 2021, doi: 10.4314/gjds.v18i2.6.

A.-K. Iddrisu, D. Otoo, I. W. Abdul, and S. Ankamah, “Modeling and Forecasting of Ghana’s Inflation Volatility,” Am. J. Ind. Bus. Manag., vol. 09, no. 04, pp. 930–949, 2019, doi: 10.4236/ajibm.2019.94064.

D. S. K. S. Yadav, “The Study of Inflation Rate and Relative Impact on the Indian Economy during Covid-19 Pandemic,” Int. J. Curr. Sci. Res. Rev., vol. 04, no. 08, Aug. 2021, doi: 10.47191/ijcsrr/V4-i8-03.

H. Berument, “Public Sector Pricing Behavior and Inflation Risk Premium in Turkey,” East. Europ. Econ., vol. 41, no. 1, pp. 68–78, Jan. 2003, doi: 10.1080/00128775.2003.11041041.

C. W. Kuswanto, B. Rohman, and G. Y. Denata, “Budikdamber Training: Efforts to Optimize the Utilization of Home Yard,” Smart Soc. Community Serv. Empower. J., vol. 2, no. 1, pp. 9–17, Jun. 2022, doi: 10.58524/smartsociety.v2i1.82.

L. Muthoharoh, R. P. Sari, M. P. Pamungkas, and A. Komarudin, “Damen (Rice Straw) Waste and Eggshell as Liquid Organic Fertilizer: An Effort for New Business Opportunities,” Smart Soc. Community Serv. Empower. J., vol. 2, no. 1, pp. 1–8, Jun. 2022, doi: 10.58524/smartsociety.v2i1.81.



  • There are currently no refbacks.

License URL:

Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.