Modeling with generalized linear model on covid-19: Cases in Indonesia

Subian Saidi, Netti Herawati, Khoirin Nisa

Abstract


The ongoing Covid-19 outbreak has made scientists continue to research this Covid-19 case. Most of the research carried out is on the prediction and modeling of Covid-19 data. This study will also discuss Covid-19 data modeling. The model that is widely used is the linear model. However, if the classical assumption of normality is not met, a special method is needed. The method that can overcome this is the generalized linear model (GLM), with the assumption that the data is distributed in an exponential family. The distribution used in this study is the Gaussian, Poisson, and Gamma distribution. Where the three distributions will be compared to get the best model. The variables used in this study were the number of confirmed Covid-19 cases per day and the number of deaths due to Covid-19 per day. This study also aims to see how much influence the confirmation of Covid-19 has on the number of deaths due to Covid-19 per day. By using 3 types of exponential family distribution, the best result is the Gaussian distribution GLM. Selection of the best model using Akaike Information Criterion (AIC).

Keywords


AIC; Gamm; Gaussian; Generalized Linear Model; Poisson.

Full Text:

PDF

References


I. Wahidah, R. Athallah, N. F. S. Hartono, M. C. A. Rafqie, and M. A. Septiadi, “Pandemik COVID-19: Analisis perencanaan pemerintah dan masyarakat dalam berbagai upaya pencegahan,” J. Manaj. dan Organ., vol. 11, no. 3, pp. 179–188, 2020, doi: 10.29244/jmo.v11i3.31695.

N. R. Yunus and A. Rezki, “Kebijakan pemberlakuan lockdown sebagai antisipasi penyebaran corona virus Covid-19,” Jurmal Sos. Budaya Syar’i, vol. 7, no. 3, pp. 227–238, 2020, doi: 10.15408/sjsbs.v7i3.15048.

L. D. Rampal and B. S. M. Liew, “Coronavirus disease coronavirus disease (COVID-19) spreads,” Who, vol. 75, no. 2, pp. 95–97, 2020.

D. Prastiwi, “Update Corona 10 desember 2020: 598.933 positif, sembuh 491.975, meninggal 18.336,” liputan6.com, 2020. https://www.liputan6.com/news/read/4430175/update-corona-10-desember-2020-598933-positif-sembuh-491975-meninggal-18336.

S. Syafrida and R. Hartati, “Bersama melawan virus covid 19 di Indonesia,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 6, pp. 495–508, 2020, doi: 10.15408/sjsbs.v7i6.15325.

A. Gharbharan et al., “Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection,” Nat. Commun., vol. 12, no. 1, pp. 1–12, 2021, doi: 10.1038/s41467-021-23469-2.

W. Trisunaryanti, T. Triyono, M. Mudasir, and A. Syoufian, “Multiple regression analysis of the influence of catalyst characters supported on γ-Al2O3 towards their hydrocracking conversion of asphaltene,” Indones. J. Chem., vol. 4, no. 1, pp. 6–11, 2010, doi: 10.22146/ijc.21868.

T. To et al., “UV, ozone, and COVID-19 transmission in Ontario, Canada using generalised linear models,” Elsevier Public Heal. Emerg. Collect., 2021.

S. Rath, A. Tripathy, and A. R. Tripathy, “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 5, pp. 1467–1474, 2020, doi: 10.1016/j.dsx.2020.07.045.

C. Bolancé and R. Vernic, “Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution,” Insur. Math. Econ., vol. 85, pp. 89–103, 2019, doi: 10.1016/j.insmatheco.2019.01.001.

S. Kawano, H. Fujisawa, T. Takada, and T. Shiroishi, “Sparse principal component regression for generalized linear models,” Comput. Stat. Data Anal., vol. 124, pp. 180–196, 2018, doi: 10.1016/j.csda.2018.03.008.

N. D. Nordin, M. S. D. Zan, and F. Abdullah, “Generalized linear model for enhancing the temperature measurement performance in Brillouin optical time domain analysis fiber sensor,” Opt. Fiber Technol., vol. 58, no. May, 2020, doi: 10.1016/j.yofte.2020.102298.

R. E. Chandler, “Multisite, multivariate weather generation based on generalised linear models,” Environ. Model. Softw., vol. 134, no. September, p. 104867, 2020, doi: 10.1016/j.envsoft.2020.104867.

J. George, J. Letha, and P. G. Jairaj, “Daily rainfall prediction using generalized linear bivariate model – a case study,” Procedia Technol., vol. 24, pp. 31–38, 2016, doi: 10.1016/j.protcy.2016.05.006.

A. Habahbeh, S. O. Fadiya, and M. Akkaya, “Factors influencing SMEs CloudERP adoption: A test with generalized linear model and artificial neural network,” Data Br., vol. 20, pp. 969–977, 2018, doi: 10.1016/j.dib.2018.07.012.

A. Ubaidilah, A. Kurnia, and K. Sadik, “Generalized multilevel linear model dengan pendekatan bayesian untuk pemodelan data pengeluaran perkapita rumah tangga,” J. Apl. Stat. dan Komputasi Stat., vol. 9, no. 1, 2017.

Z. Ummah, Suliyanto, and Sediono, “Estimasi model linier tergeneralisasi gaussian berdasarkan maximum likelihood estimator dengan menggunakan algoritma fisher scoring,” J. Mat., vol. 1, no. 1, pp. 110–120, 2012.

A. Calabrese, J. W. Schumacher, D. M. Schneider, L. Paninski, and S. M. N. Woolley, “A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds,” PLoS One, vol. 6, no. 1, 2011, doi: 10.1371/journal.pone.0016104.

P. McCullagh and J. A. Nelder, “Glmbook.Pdf,” Chapman and Hall. pp. 1–511, 1989.

F. J. Carvalho, D. G. de Santana, and L. B. de Araújo, “Why analyze germination experiments using generalized linear models?,” J. Seed Sci., vol. 40, no. 3, pp. 281–287, 2018, doi: 10.1590/2317-1545v40n3185259.

G. Cerda, C. Pérez, J. I. Navarro, M. Aguilar, J. A. Casas, and E. Aragón, “Explanatory model of emotional-cognitive variables in school mathematics performance: a longitudinal study in primary school,” Front. Psychol., vol. 6, no. September, pp. 1–10, 2015, doi: 10.3389/fpsyg.2015.01363.

J. E. Cote, “Sociological perspectives on identity formation: The culture-identity link and identity capital,” J. Adolesc., vol. 19, no. 5, pp. 417–28, 1996, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9245295.

A. Wibowo and M. R. Ridha, “Comparison of logistic regression model and MARS using multicollinearity data simulation,” JTAM | J. Teor. dan Apl. Mat., vol. 4, no. 1, p. 39, 2020, doi: 10.31764/jtam.v4i1.1801.

N. S. U, D. Ispriyanti, and T. Widiharih, “Online di : http://ejournal-s1.undip.ac.id/index.php/gaussian aplikasi model regresi poisson tergeneralisasi pada kasus angka kematian bayi di jawa tengah tahun 2007,” vol. 2, pp. 361–368, 2013.

R. G. Brereton, “The normal distribution,” J. Chemom., vol. 28, no. 11, pp. 789–792, 2014, doi: 10.1002/cem.2655.

S. A. Mousel, “The exponential function expository paper shawn,” MAT Expo. Pap., 2006.

C. Czado and A. E. Raftery, “Choosing the link function and accounting for link uncertainty in generalized linear models using Bayes factors,” Stat. Pap., vol. 47, no. 3, pp. 419–442, 2006, doi: 10.1007/s00362-006-0296-9.

piet de jong and G. z. Heller, www.GFX.0fees.net. 2014.

M. Fathurahman, “Pemilihan model regresi terbaik menggunakan metode akaike’s information criterion dan schwarz information criterion,” J. Inform. Mulawarman, vol. 4, no. 3, 2009.

M. Fathurahman, “Pemilihan model regresi terbaik menggunakan akaike’s information criterion,” J. EKSPONENSIAL, vol. 1, no. 2, pp. 26–33, 2010.




DOI: http://dx.doi.org/10.24042/ijecs.v1i1.9299

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.