Efficiency Improvement, Design Optimization, and Expansion of Oxygen Flow Valve Holes in Small Industrial Scale Husk Furnaces

Rahmah Asri Nurani Hanifan, Siti Hajar, Nazopatul Patonah Har, Mahfuddin Zuhri, Erus Rustami, Siti Nikmatin, Irzaman Irzaman

Abstract


Indonesia has an abundant amount of industry. Production in large, medium, and small industries still uses gas and oil as fuel sources. The fuel sources used still come from non-renewable energy. There is a need for alternative use of renewable energy to reduce the use of non-renewable energy. One solution is the use of rice husk biomass as a fuel source. Rice husk is still often considered as waste despite its many utilizations. The utilization of rice husk waste must be improved to increase its beneficial value. Rice husk waste can be utilized as a fuel source in a husk furnace. A husk furnace is a cooking device in which the fuel (rice husk) is burned using direct combustion. This research aims to optimize the efficiency of the husk furnace by varying the size of the oxygen flow valve hole and the mass of water being heated. Tests were conducted on four variations of oxygen flow valve hole size, namely, 36x27 cm2, 36x34 cm2, 43x34 cm2, and 50x34 cm2, and two variations of water mass (6 and 18 kg). The research was conducted by heating water using the Water Boiling Test method with test parameters: heating time, fuel consumption rate, energy in, energy out, heat efficiency, heat transfer rate, and ash and charcoal yield. The significant efficiency value can be used as a reference for small-scale industrial rice husk furnaces. The most significant efficiency in the study was 54.99%, achieved by a 43x34 cm2 valve hole for heating 18 kg of water. Based on the most effective efficiency value gained, the expansion of the oxygen flow valve hole is sufficient to be used as a test parameter to test the optimization of small industrial-scale husk furnaces.


Keywords


Design Optimization; Efficiency Improvement; Expansion; Husk Furnace; Oxygen Flow Valve Hole

Full Text:

PDF

References


Adistia, N. A., Nurdiansyah, R. A., Fariko, J., Vincent, V., & Simatupang, J. W. (2020). Potensi Energi Panas Bumi, Angin, dan Biomassa Menjadi Energi Listrik di Indonesia. TESLA: Jurnal Teknik Elektro, 22(2), 105–116. https://doi.org/10.24912/tesla.v22i2.9107

Zul, A. (2009). Kimia Dasar. USU Press.

Allo, J. S. T., Setiawan, A., & Sanjaya, A. S. (2018). Pemanfaatan Sekam Padi untuk Pembuatan Biobriket Menggunakan Metode Pirolisa. Jurnal Chemurgy, 2(1), 17–23. https://doi.org/10.30872/cmg.v2i1.1633

Aswadi, K., Jamal, Abd., Syahnur, S., & Nasir, M. (2023). Renewable and Non-renewable Energy Consumption in Indonesia: Does it Matter for Economic Growth? International Journal of Energy Economics and Policy, 13(2), 107–116. https://doi.org/10.32479/ijeep.13900

Azhar, M., Solechan, Saraswati, R., Suharso, P., Suhartoyo, & Ispiyarso, B. (2018). The new renewable energi consumption policy of rare earth metals to build Indonesia’s national energy security. E3S Web of Conferences, 1–10.

Babu, D., & Anand, R. (2019). Influence of fuel injection timing and nozzle opening pressure on a CRDI-assisted diesel engine fueled with biodiesel-diesel-alcohol fuel. In Advances in Eco-Fuels for a Sustainable Environment (pp. 353–390). Elsevier. https://doi.org/10.1016/B978-0-08-102728-8.00013-9

Cholis, N., Lukmana, M. A., Fahrudin, F., & Montreano, D. (2021). Utilization training of rice husk waste as alternative energy in Baros District, Serang, Indonesia. Community Empowerment, 6(5), 762–768. https://doi.org/10.31603/ce.4480

Demiyati. (2010). Pembuatan beberapa macam ukuran lubang pada dinding tubuh tungku sekam untuk mendapatkan efisiensi kalor lebih tinggi. IPB University.

Forsberg, C. H. (2021). Introduction to heat transfer. In Heat Transfer Principles and Applications (pp. 1–21). Elsevier. https://doi.org/10.1016/B978-0-12-802296-2.00001-9

Hajar, S., Har, N. P., Irmansyah, I., Arif, A., & Irzaman, I. (2022). Optimization of Oxygen Flow Valve Holes in Small Industrial Scale Husk Furnaces. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 11(2), 255–265. https://doi.org/10.24042/jipfalbiruni.v11i2.14291

Handayani, P. A., Nurjanah, E., & Rengga, W. D. P. (2015). Pemanfatan Limbah Sekam Padi Menjadi Silika Gel. Jurnal Bahan Alam Terbarukan, 3(2), 55–59. https://doi.org/10.15294/jbat.v3i2.3698

Hasanah, A. W., & Handayani, O. (2016). Perbandingan efisiensi energi dan biaya pada kompor induksi tehadap kompor listrik dan kompor gas. Jurnal Sutet, 6(2), 22–29.

Irzaman, Alatas, H., Darmasetiawan, H., Yani, A., & Musiran. (2008). Development of Cooking Stove from Waste (Rice Husk).

Karamoy, J. M., Santoso, B., & Gultom, S. O. (2019). Studi Karakteristik Bio-briket Berbahan Baku Limbah Kulit Batang Sagu dan Tempurung Kelapa. Agritechnology, 2(1), 2620–4738. https://doi.org/10.51310/agritechnology.v2i1.23

Khasanah, I. N., & Astuti, K. (2022). Luas Panen dan Produksi Padi di Indonesia 2021 (Hasil Kegiatan Pendataan Statistik Pertanian Tanaman Pangan Terintegrasi dengan Metode Kerangka Sampel Area). Badan Pusat Statistik.

Maulana, R. (2009). Optimasi efisiensi tungku sekam dengan variasi lubang utama pada badan kompor. IPB University.

Miller, B. G. (2011). Clean Coal Technologies for Advanced Power Generation. In Clean Coal Engineering Technology (pp. 251–300). Elsevier. https://doi.org/10.1016/B978-1-85617-710-8.00007-8

Mirmanto, M., Mulyanto, A., & Hidayatullah, L. R. (2018). Hubungan Ketinggian dan Diameter Lubang Udara Tungku Pembakaran Biomassa dan Efisiensi Tungku. Jurnal Teknik Mesin, 6(4), 225–230. https://doi.org/10.22441/jtm.v6i4.2048

Moran, M. J., & Shapiro, H. N. (2004). Termodinamika Teknik Jilid 1 (W. Santika & W. Hardani, Eds.; 4th ed.). Penerbit Erlangga.

Mulyanto, A., Mirmanto, & Athar, M. (2016). Pengarah ketinggian lubang udara pada tungku pembakaran biomassa terhadap unjuk kerjanya. Dinamika Teknik Mesin, 6(1), 22–30.

Piskier, T. (2017). A method of estimation of the caloric value of the biomass. Part I – biomass energi potential. Journal of Mechanical and Energy Engineering, 1(41)(2), 189–194.

Prasetya, G. N. A. S., Sucipta, M., & Winaya, I. N. S. (2015). Perancangan gasifikasi downdraft dengan variasi laju aliran oksigen sebagai agen gasifikasi. Jurnal METTEK, 1(2), 1–8.

Primadita, D. S., Kumara, I. N. S., & Ariastina, W. G. (2020). A Review on Biomass for Electricity Generation in Indonesia. Journal of Electrical, Electronics and Informatics, 4(1), 1–9. https://doi.org/10.24843/JEEI.2020.v04.i01.p01

Putra, I. R., Safruloh, G., Frisdan, Z., Karyadi, J. N. W., Purwantana, B., Telaumbanua, A. N., & Ayuni, D. (2022). Performance test of the biomass furnace for bed dryer using various of agriculture wastes. IOP Conference Series: Earth and Environmental Science, 1038(1), 012023. https://doi.org/10.1088/1755-1315/1038/1/012023

Rani, C. S., Kandpal, T. C., & Mullick, S. C. (1992). Preliminary study of water boiling test procedures used for performance evaluation of fuelwood cookstoves. Energy Conversion and Management, 33(10), 919–929. https://doi.org/10.1016/0196-8904(92)90106-7

Simorangkir, H. (2011). Kajian efisiensi energi tungku sekam berdasarkan jumlah, bentuk, dan ukuran sirip yang dipasang. IPB University.

Singh, B. (2018). Rice husk ash. In Waste and Supplementary Cementitious Materials in Concrete (pp. 417–460). Elsevier. https://doi.org/10.1016/B978-0-08-102156-9.00013-4

Soukotta, J., & Moniharapon, A. (2015). Beberapa variasi laju alir udara pembakaran pada gasifikasi tempurung kelapa yang menggunakan updraft gasifikasi. Jurnal Tekno Mesin, 2(2), 12.

Stewart, M. (2021). Heat transfer theory. In Surface Production Operations (pp. 361–430). Elsevier. https://doi.org/10.1016/B978-0-12-803722-5.00009-4

Sulaiman, & Ilham, S. (2018). Laju Perpindahan Panas Pada Tungku Biomassa dengan Bahan Bakar Tempurung Kelapa Serbuk Kayu dan Sekam Padi. Menara Ilmu, 12(79), 110–116.

Supit, M., Tumaliang, H., & Rumbayan, E. M. (2015). Pemanfaatan sekam padi sebagai energi alternatif untuk membangkitkan energi listrik. E-Journal Teknik Elektro Dan Komputer, 4(5), 12–18.

Triwibowo, B. (2013). Teori dasar simulasi proses pembakaran limbah vinasse dari industri alkohol berbasis CFD. Jurnal Bahan Alam Terbarukan, 2(2), 14–24.

Widodo, A. S. (2015). Jarak Optimum Panci Terhadap Selubung Pada Efisiensi Sistem Pemanasan Air. Jurnal Rekayasa Mesin, 6(1), 69–73. https://doi.org/10.21776/ub.jrm.2015.006.01.10

Xu, J. (2010). Heat Transfer in Combustion Systems. In Handbook of Combustion (pp. 107–134). Wiley. https://doi.org/10.1002/9783527628148.hoc005

Zelviani, S., Riska, & Fitriyanti. (2020). Nilai termofisika daun kapuk, daun sirih, dan daun kembang sepatu sebagai bahan kompres demam. Jurnal Fisika Dan Terapannya, 7(2), 107–113.

Zhou, X., Broadbelt, L. J., & Vinu, R. (2016). Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass (pp. 95–198). https://doi.org/10.1016/bs.ache.2016.09.002

Zulatama, A., Syarif, A., & Yerizam, M. (2021). Effect of Oxygen Flow Rate on Combustion Time and Temperature of Underground Coal Gasification. International Journal of Research in Vocational Studies (IJRVOCAS), 1(2), 27–33. https://doi.org/10.53893/ijrvocas.v1i2.27




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18960

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.