Acute Toxicity of Household-Scale Lebak Batik Industrial Wastewater on Common Carp

Swastika Oktavia, Cory Novi

Abstract


The concentration of Lebak Batik industrial wastewater contains the pollutant element of lead metal that negatively impacts organisms' content in the water. This study was focused on the acute toxicity of household-scale Lebak Batik industrial wastewater on carp. The methods used were waste characteristics test, animal acclimatization, acute toxicity test for 96 hours with 0, 10, 20, 30, 40, and 50% treatments, measurement of environmental parameters, and data analysis using probit analysis. The results showed that the lethal time (LT50) and lethal concentration (LC50) for 96 hours of treatment were 1,8 days and 8,56%, respectively, with a Toxicity Unit Area (TUa) of 11,68. This proved that the wastewater from the Lebak batik industry had a major effect on causing acute toxicity.


Keywords


Acute toxicity; Common carp; Industrial wastewater; Lebak batik.

Full Text:

PDF

References


Agustiana, H., Lestari, S., & Wibowo, E. S. (2020). Toksisitas Subletal Limbah Cair Batik hasil Biosorpsi terhadap Ikan Mas (Cyprinus carpio L .) ditinjau dari Differensial Leukosit. Bioeksakta : Jurnal Ilmiah Biologi Unsoed, 2(2), 248–254.

Andriani, R., & Hartini, H. (2017). Toksisitas Limbah Cair Industri Batik Terhadap Morfologi Sisik Ikan Nila Gift (Oreochomis nilotocus). Jurnal SainHealth, 1(2), 83–91. https://doi.org/10.51804/jsh.v1i2.108.83-91

Arfiati, D., Zakiyah, U., Nabilah, I. S., Khoiriyah, N., Jayanti, A. S., & Kharismayanti, H. F. (2019). Perbandingan LC50 – 96 jam terhadap mortalitas benih ikan mas, Cyprinus carpio Linnaeus 1758 pada limbah penyamakan kulit dan insektisida piretroid. Jurnal Iktiologi Indonesia, 18(2), 103. https://doi.org/10.32491/jii.v18i2.430

Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861.

Christin, F., Elystia, S., & Yenie, E. (2015). Uji toksisitas akut limbah cair tahu terhadap Daphnia magna dengan metode renewal test. JOM FTEKNIK, 2(2), 1–9.

Davis, M. W., Olla, B. L., & Schreck, C. B. (2001). Stress-induced by hooking, net towing, elevated seawater temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. Journal of Fish Biology, 58(1), 1–15.

Devi, P. A., Padmavathy, P., Aanand, S., & Aruljothi, K. (2017). Review on water quality parameters in freshwater cage fish culture. International Journal of Applied Research, 3(5), 114–120.

Dietrich, M. A., Arnold, G. J., Nynca, J., Fröhlich, T., Otte, K., & Ciereszko, A. (2014). Characterization of carp seminal plasma proteome in relation to blood plasma. Journal of proteomics, 98, 218–232.

Dot, D., Miro, J., & Fuentes-Arderiu, X. (1992). Biological variation of the leukocyte differential count quantities. Scandinavian journal of clinical and laboratory investigation, 52(7), 607–611.

Efriadi, H., Mutiara, D., & Emilia, I. (2018). Uji Toksisitas Akar Tuba (Derris eliptica) terhadap Mortalitas Benih Ikan Nila (Oreochromis sp). Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 15(1), 56. https://doi.org/10.31851/sainmatika.v15i1.1783

Gamperl, A. K., & Syme, D. A. (2021). Temperature effects on the contractile performance and efficiency of oxidative muscle from a eury-vs. Stenothermal salmonid. Journal of Experimental Biology.

Hastuti, B., Masykur, A., & Hadi, S. (2016). Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes. IOP Conference Series: Materials Science and Engineering, 107(1). https://doi.org/10.1088/1757-899X/107/1/012020

Hidayati, N., Lestari, S., & Wibowo, E. S. (2019). Toksisitas Subletal Limbah Cair Batik Hasil Biosorpsi terhadap Hematokrit Ikan Mas (Cyprinus carpio). Bioeksakta : Jurnal Ilmiah Biologi Unsoed, 1(2), 44–47.

Indrayani, L., & Triwiswara, M. (2018). Efektivitas pengolahan limbah cair industri batik dengan teknologi lahan basah buatan. Dinamika Kerajinan dan Batik, 35(1), 53–66.

Joko, T., Putri, D. A. C., & Dangiran, H. L. (2016). Chitosan on reducing chemical oxygen demands in laundry wastewater. International Journal of Sciences, 30(1), 104–111.

Juliardi, N. R., Andini, N., & AS, Y. (2020). Analisis Toksisitas Limbah Cair Batik Tulis dan Bioconcentration Factor Ikan Sepat (Trichogaster tricopterus). Jurnal ENVIROTEK, 12(1), 19–26.

Kasumyan, A. O. (2019). The taste system in fishes and the effects of environmental variables. Journal of fish biology, 95(1), 155–178.

Kusumaningratri, T. A., & Damayanti, A. (2016). Impact of Competition Membran Chitosan and Zeolite Composite for Batik Colouring Wastewater Treatment. 205–213.

Lestari, S., Sudarmadji, Tandjung, S. D., & Santosa, S. J. (2017). Lethal toxicity of Batik wastewater bio-sorption results in Tilapia (Oreochromis niloticus). Advanced Science Letters, 23(3), 2611–2613. https://doi.org/10.1166/asl.2017.8744

Little, E. E., & Finger, S. E. (1990). Swimming behavior as an indicator of sublethal toxicity in fish. Environmental Toxicology and Chemistry: An International Journal, 9(1), 13–19.

Moreno, F., Sanz-Guajardo, D., Lopez-Gomez, J. M., Jofre, R., & Valderrabano, F. (2000). Increasing the hematocrit has a beneficial effect on quality of life and is safe in selected hemodialysis patients. Journal of the American Society of Nephrology, 11(2), 335–342.

Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., & Kolar, B. (2003). A practical and user‐friendly toxicity classification system with microbiotests for natural waters and wastewaters (hlm. 395–402).

Pratiwi, Y., Hastutiningrum, S., & Suyadi, D. K. (2016). Uji toksisitas limbah cair batik sebelum dan sesudah diolah dengan tawas dan super flok terhadap bioindikator (Cyprinus carpio L.). Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), November, 571–579.

Rahmadyanti, E., & Audina, O. (2020). The Performance of Hybrid Constructed Wetland System for Treating the Batik Wastewater. Journal of Ecological Engineering, 21(3).

Rahmaniah, G., Mahdi, C., & Safitri, A. (2019). Biosorption of Synthetic Dye from Batik Wastewater Using Trichoderma viride Immobilized on Ca-Alginate. Journal of Physics: Conference Series, 1374(1), 012007.

Ridwantara, D., Buwono, I. D., Handaka, A. A., Lili, W., & Bangkit, I. (2019). Uji kelangsungan hidup dan pertumbuhan benih ikan mas (Cyprinus carpio) pada rentang suhu yang berbeda. Jurnal Perikanan dan Kelautan, 10(1), 46–54.

Roopadevi, H., & Somashekar, R. K. (2012). Assessment of the toxicity of wastewater from a textile industry to Cyprinus carpio. Journal of Environmental Biology, 33(2), 167.

Safauldeen, S. H., Abu Hasan, H., & Abdullah, S. R. S. (2019). Phytoremediation efficiency of water hyacinth for batik textile effluent treatment. Journal of Ecological Engineering, 20(9).

Sani, K. I., Lestari, S., & Atang. (2020). Gambaran Histopatologis Ginjal Ikan Mas (Cyprinus carpio) yang terpapar Limbah Cair Batik Hasil Biosorpsi. Bioeksakta : Jurnal Ilmiah Biologi UnsoedJurnal Ilmiah Biologi Unsoed, 2(1), 7–10.

Saucedo-Vence, K., Elizalde-Velázquez, A., Dublán-García, O., Galar-Martínez, M., Islas-Flores, H., SanJuan-Reyes, N., García-Medina, S., Hernández-Navarro, M. D., & Gómez-Oliván, L. M. (2017). Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). Science of the Total Environment, 575, 347–357. https://doi.org/10.1016/j.scitotenv.2016.09.230

Schreck, C. B., & Tort, L. (2016). The concept of stress in fish. Dalam Fish physiology (Vol. 35, hlm. 1–34). Elsevier.

Susilo, H., Oktavia, S., & Roudatussa’adah. (2021). Phytoremediation of batik industry wastewater using water hyacinth plant as a medium for maintaining Cyprinus Carpio L . Biological Environment and Pollution, 1(1), 11–18.

Tang, H., Jing, J., Bo, D., & Xu, D. (2012). Biological variations of leukocyte numerical and morphologic parameters determined by UniCel DxH 800 hematology analyzer. Archives of pathology & laboratory medicine, 136(11), 1392–1396.

Tangahu, B. V., Ningsih, D. A., Kurniawan, S. B., & Imron, M. F. (2019). Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. Journal of Ecological Engineering, 20(5).

Tokarz, D. A., & Wolf, J. C. (2022). Animal Models in Toxicologic Research: Nonmammalian. Dalam Haschek and Rousseaux’s Handbook of Toxicologic Pathology (hlm. 811–857). Elsevier.




DOI: http://dx.doi.org/10.24042/biosfer.v12i2.9737

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Biosfer: Jurnal Tadris Biologi

License URL: https://creativecommons.org/licenses/by-sa/4.0