Mathematical Model Simulation of Non-Linear Equations using MATLAB: Specific Volume of Gas with Van der Waals Equation

Ayu Fitri Amalia, Widodo Budhi, Asih Melati, Urip Nurwijayanto Prabowo


Computational physics is concerned with the application of numerical methods in solving physical problems. The van der Waals gas model is one of the most common non-linear models. This study simulated a mathematical model of a non-linear equation using MatLab for the case of the specific volume of gas in the equation of the state of van der Waals. This study aimed to determine the molar volume and compressibility factor, as well as describe the relationship between the compressibility factor and the reduced pressure. The method of the study is experimental. The independent variables are the reduced pressure and temperature values. The dependent variable is the determination of the value of the molar volume (V) and the compressibility factor (Z). The control variable, in the form of a function used in solving this case, is based on van der Waals equation with the gas used is ammonia. The fzero command can be used to solve f(x)=0 with a single variable. This program that has been running successfully can show various predictions in the form of reduction pressure, thus obtaining the values of the molar volume and compressibility factor using the ideal gas equation. There is a deviation in ammonia gas, the Z>1 at high reduction pressures and Z<1 at medium pressures. This study can provide contributions and benefits in the form of material enrichment of thermodynamics to understand how real gases behave. The ideal gas equation can be modified into the van der Waals equation.


MatLab; Non-Linear Equation; Specific Volume of Gas; Van der Waals Equation;

Full Text:



Amalia, A. F., Budhi, W., & Arifin, N. (2020). Comparative analysis of edge detection methods on beaker glass. Journal of Physics: Conference Series, 1446(1), 1–7.

Ball, D. W., & Key, J. A. (2014). Introductory chemistry-1st canadian edition.

Berberan, S, M. N., Bodunov, E. N., & Pogliani, L. (2008). The van der waals equation: Analytical and approximate solutions. Journal of Mathematical Chemistry, 43, 1437–1457.

Chapra, S. C., & Canale, R. P. (2015). Numerical methods for engineers (7th Edition). McGrow-Hill education.

Chogle, A., & Maddah, H. (2015). Critical state behavior of van der waal gases & conformation to nelson-obert characteristics. International Journal of Scientific & Engineering Research, 6(10), 134–139.

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). Steffensen type methods for solving nonlinear equations? Journal of Computational and Applied Mathematics, 236(12), 3058–3064.

Gilat, A., & Subramaniam, V. (2014). An introduction with appliications using MATLAB® (L. Ratts & H. Ellis, Eds.; 3rd Edition). Don Fowley.

Gimenez, A., Chausse, V., & Meseguer, A. (2015). Numerical continuation in classical mechanics and thermodynamics. European Journal of Physics, 36(1), 1–18.

Haqueqy, N., Silalahi, B. P., & Sitanggang, I. (2018). Uji komputasi algoritme varian metode newton pada permasalahan optimasi nonlinear tanpa kendala. Journal of Mathematics and Its Applications, 15(2), 63–76.

Hutagalung, S. N. (2017). Pemahaman metode numerik (studi kasus metode new-rhapson) menggunakan pemprograman MatLab. Jurnal Teknologi Informasi, 1(1), 95–100.

Israelachvili, J. N. (2011). 6 - Van der Waals Forces. In J. N. Israelachvili (Ed.), Intermolecular and Surface Forces (Third Edition) (pp. 107–132). Academic Press.

Johnston, D. C. (2014). Van der Waals equation of state, reduced variables and laws of corresponding states. In Advances in Thermodynamics of the van der Waals Fluid (pp. 5–1 to 5–13). Morgan & Claypool Publishers.

Juhari, J. (2021). On the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function. CAUCHY, 7(1), 84–96.

Khdhr, F. W., Saeed, R. K., & Soleymani, F. (2019). Improving the computational efficiency of a variant of Steffensen’s method for nonlinear equations. Mathematics, 7(3), 1–9.

Kulinskii, V. L. (2014). The critical compressibility factor value: Associative fluids and liquid alkali metals. Journal of Chemical Physics, 141(5), 1–6.

Kurasov, D. (2020). Mathematical modeling system MatLab. Journal of Physics: Conference Series, 1691(1), 1–9.

Manikantachari, K. R. v, Martin, S., Bobren-Diaz, J. O., & Vasu, S. (2017). Thermal and transport properties for the simulation of direct-fired sCO2 combustor. Journal of Engineering for Gas Turbines and Power, 139(12), 1–14.

Moiseeva, E. F., & Malyshev, V. L. (2019). Compressibility factor of natural gas determination by means of molecular dynamics simulations. AIP Advances, 9(5), 1–6.

Muhaijir, M. N., & Djumadila, S. A. (2017). Penyelesaian persamaan nonlinear menggunakan metode iterasi tiga langkah. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI) 9, 598–603.

Prodanov, E. (2022). Mathematical analysis of the van der Waals Equation. Technological University Dublin.

Ritonga, J., & Suryana, D. (2019). Perbandingan kecepatan konvergensi akar persamaan non linier metode titik tetap dengan metode newton raphson menggunakan matlab. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 11(2), 51–64.

Sabda, D., Prasetya, B., & Kinasih, I. P. (2014). Kajian gelombang satu dimensi berdsarakan hasil komputasi numerik. Jurnal Ilmiah Pendidikan Fisika “Lensa,” 2(2), 217–219.

Sadhukhan, S., Kar, A., & Chattopadhay, S. (2021). Thermodynamic analysis for Non-linear system (Van-der-Waals EOS) with viscous cosmology. European Physical Journal C, 81(10), 1–21.

Sadiku, M., Shadare, A., & Musa, S. (2017). Computational physics: An introduction. International Journal of Engineering Research, 6, 427–428.

Saheya, B., Chen, G. qing, Sui, Y. kang, & Wu, C. ying. (2016). A new Newton-like method for solving nonlinear equations. SpringerPlus, 5(1), 1–13.

Sahoo, T., & Pine, S. (2016). Design and simulation of various edge detection techniques using MatLab Simulink. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 1224–1228.

Shah, F. A., & Noor, M. A. (2015). Some numerical methods for solving nonlinear equations by using decomposition technique. Applied Mathematics and Computation, 251, 378–386.

Soleymani, F. (2013). Some optimal iterative methods and their with memory variants. Journal of the Egyptian Mathematical Society, 21(2), 133–141.

Sumardi, Y., Amalia, A. F., & Prabowo, U. N. (2022). Develoment of the computer simulation of oscillation in physics learning. Jurnal Pendidikan Fisika Indonesia, 18(1), 33–44.

Suzuki, M. S., & Suzuki, I. S. (2015). Understanding on thermodynamic properties of van der Waals equation of state with the use of Mathematica. Department of Physics, SUNY.

Temelcan, G., Sivri, M., & Albayrak, I. (2020). A new iterative linearization approach for solving nonlinear equations systems. International Journal of Optimization and Control: Theories and Applications, 10(1), 47–54.

Utari, K., Mulyaningsih, N. N., Astuti, I. A. D., Bhakti, Y. B., & Zulherman, Z. (2021). Physics calculator application with matlab as a learning media to thermodynamics concept. Momentum: Physics Education Journal, 5(2), 101–110.

Wibowo, N. A., Susilo, W., Sigit, A., Setiyani, A., & Fillimditty, E. J. (2017). Desain eksperimen karakterisasi perilaku udara sekitar dalam tinjauan sebagai gas ideal atau gas nyata. Scientiae Educatia: Jurnal Pendidikan Sains, 6(2), 102–110.

Zhong, W., Xiao, C., & Zhu, Y. (2017). Modified Van der Waals equation and law of corresponding states. Physica A: Statistical Mechanics and Its Applications, 471(11375091), 295–300.



  • There are currently no refbacks.

Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.