Unimodular matrix and bernoulli map on text encryption algorithm using python

https://doi.org/10.24042/ajpm.v12i2.10469

Samsul Arifin, Indra Bayu Muktyas, Puguh Wahyu Prasetyo, Abdul Azis Abdillah

Abstract


One of the encryption algorithms is the Hill Cipher. The square key matrix in the Hill Cipher method must have an inverse modulo. The unimodular matrix is one of the few matrices that must have an inverse. A unimodular matrix can be utilized as a key in the encryption process. This research aims to demonstrate that there is another approach to protect text message data. Symmetric cryptography is the sort of encryption utilized. A Bernoulli Map is used to create a unimodular matrix. To begin, the researchers use an identity matrix to generate a unimodular matrix. The Bernoulli Map series of real values in (0,1) is translated to integers between 0 and 255. The numbers are then inserted into the unimodular matrix's top triangular entries. To acquire the full matrix as the key, the researchers utilize Elementary Row Operations. The data is then encrypted using modulo matrix multiplication.


Keywords


Bernoulli Map; Hill cipher; Python; Unimodular Matrix

Full Text:

PDF

References


Anton, H., & Rorres, C. (2013). Elementary linear algebra: Applications version. John Wiley & Sons.

Arifin, S., Bayu Muktyas, I., & Iswara Sukmawati, K. (2021). Product of two groups integers modulo m,n and their factor groups using Python. Journal of Physics: Conference Series, 1778(1). https://doi.org/10.1088/1742-6596/1778/1/012026

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan Suatu Matriks Unimodular Dengan Python. Jurnal Derivat: Jurnal Matematika Dan Pendidikan Matematika, 5(2), 1–10.

Arifin, S., & Muktyas, I. B. (2021). Generate a system of linear Equation through unimodular matrix using Python and Latex. AIP Conference Proceedings, 2331. https://doi.org/10.1063/5.0041651

Delmi, A., Suryadi, S., & Satria, Y. (2020). Digital image steganography by using edge adaptive based chaos cryptography. Journal of Physics: Conference Series, 1442(1). https://doi.org/10.1088/1742-6596/1442/1/012041

Devaney, R. (2018). An Introduction To Chaotic Dynamical Systems. CRC Press.

Guo, X., & Yang, G. (2013). The probability of rectangular unimodular matrices over Fq[x]. Linear Algebra and Its Applications, 438(6), 2675–2682.

Hanson, R. (1982). Integer matrices whose inverses contain only integers. The Two-Year College Mathematics Journal, 13(1), 18–21.

Irsan, M. Y. T., & Antoro, S. C. (2019). Text encryption algorithm based on chaotic map. Journal of Physics: Conference Series, 1341(6). https://doi.org/10.1088/1742-6596/1341/6/062023

Kordov, K. (2021). Text Encryption Algorithm For Secure Communication. International Journal of Applied Mathematics, 34(4), 705–719. https://doi.org/10.12732/ijam.v34i4.9

Maulida, S. (2018). Pengamanan Citra Biner dengan Algoritma Data Encryption Standard (DES) dan Bernoulli Map. UNIVERSITAS JEMBER.

Muktyas, I. B., Sulistiawati, & Arifin, S. (2021). Digital image encryption algorithm through unimodular matrix and logistic map using Python. AIP Conference Proceedings, 2331. https://doi.org/10.1063/5.0041653

Nana, N., & Prasetyo, P. W. (2021). An implementation of Hill cipher and 3x3x3 rubik’s cube to enhance communication security. Bulletin of Applied Mathematics and Mathematics Education, 1(2), 75–92.

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10–20.

Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24(9), 926–934. https://doi.org/10.1016/j.imavis.2006.02.021

Rosen, K. H. (2019). Discrete Mathematics and its Applications (8th ed.). McGraw-Hill Education.

Siahaan, A. P. U. (2018). Application of Hill Cipher Algorithm in Securing Text Messages. 55–59. https://doi.org/10.31227/osf.io/n2kdb

W, S. (2006). Cryptography and Network Security: Principles and Practices (4th ed.). Pearson Prentice Hall.

Ye, R., & Ma, Y. (2013). A Secure and Robust Image Encryption Scheme Based on Mixture of Multiple Generalized Bernoulli Shift Maps and Arnold Maps. International Journal of Computer Network and Information Security, 5(7), 21–33. https://doi.org/10.5815/ijcnis.2013.07.03




DOI: https://doi.org/10.24042/ajpm.v12i2.10469

Article Metrics

Abstract views : 255 | PDF downloads : 140

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Al-Jabar : Jurnal Pendidikan Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
Al-Jabar : Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.